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CHAPTER 1

INTRODUCTION

1. Background

Control systems design and synthesis are very

complicated engineering processes. There are many steps

involved in repetitive mathematical manipulations such as

those found in calculus, matrix algebra, transformations

between frequency and time domains, graphical plotting, and

probability and stochastic process characterization and

simulation. Conceptually, most of these computations are

very simple. However, they require a significant amount of

time and effort to perform. Thus, such calculations can be

4 tedious if accomplished manually. To allow control

engineers to concentrate on the critical aspects of their

design without spending a great deal of time on tedious -.

calculations and graphical techniques, tools such as

computer-aided design (CAD) programs are necessary.

Over the years, industries and universities have

developed several CAD programs to assist control engineers

and students. The Air Force Institute of Technology (AFIT),

like other universities, has developed CAD research

programs for control system design and analysis. One of the

most successful products of the project is TOTAL [2]. TOTAL

is an interactive software package for digital and

continuous control system analysis and synthesis. It was

° . °. ' 1



INTRODUCTION

initially developed by two AFIT students, Frederick O'Brien

[1] and Stanley Larimer [2]. Both students consolidated

several AFIT computer programs into TOTAL and hosted it on -. "-

the Control Data Corporation (CDC) Cyber computer at Wright-

Patterson Air Force Base (WPAFB), Ohio. In a later effort,

Glen Logan (3] successfully transported TOTAL from the Cyber

to a VAX 11/780, an AFIT/EN computer located in the

Information Sciences Laboratory. His effort resulted in

improving the user interfaces for TOTAL and providing a

backup CAD capability, thus minimizing the impact of

system down time. Logan's work is known as VAXTOTAL. Other

efforts were recently accomplished by two students, Charles

Gembarowski (4] and Robert Wilson [5]. Both have improved

VAXTOTAL's interactive environment by incorporating many of

its routines into a highly structured and modular program

known today as ICECAP (Interactive Control Engineering

Computer Analysis Package), currently hosted on the VAX

11/780. Their efforts resulted in a new system which

provides both user "friendliness" and the ongoing

maintenance of the system. ICECAP is now able to perform an

entire range of continuous time control functions.

2. Problem

Although TOTAL performs very well as far as problem

solving is concerned, it still has several deficiencies that

reduce the overall effectiveness of the program. These

2- o
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deficiencies fall into four major areas

2.1 Structure. TOTAL has a very tight structure which

makes the program difficult to expand. The reason for this

is that TOTAL is composed of many existing FORTRAN routines

[5]. Each one of them uses FORTRAN COMMON variables which

make the program very tightly coupled [4]. Additionally,

some external routines such as the CALCOMP and PLOT10

libraries are not identified [4]. This makes the transfer

of the program to another computer system difficult.

Finally, TOTAL is not well-documented in source code, thus

causing difficulty in improving and maintaining the system.

2.2 Usability. TOTAL is not well-designed with

respect to user interfaces. It has over 100 options in

which the user interactively enters and manipulates transfer

functions and matrices, while appling root-locus, frequency

and time response options. This makes TOTAL inconvenient

to use, especially for the inexperienced user.

2.3 Workload of Computer. Since the CDC Cyber is one

of the most heavily used computer facilities at WPAFB, it is

often saturated. When this happens, it may be impossible to

access the system. A backup capability using the VAX for

courses and design applications will serve to reduce the

Cyber workload.

2.4 Computational Problem. Lastly, and more

importantly, the "number crunching" foundations of TOTAL are -

3
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INTRODUCTION

feedback design using phase variable representation will be

functions are already available in TOTAL. However, this L

thesis effort will develop routines that perform more

efficiently.

4. Summary of Current Knowledge

Currently, there are existing computer programs

(2,7,8,15,35,36,39,41] that accomplish matrix operations and

the basics of modern control design and analysis.

Unfortunately, few of these programs provide the user with

an integrated package of design tools to perform the wide

range of computations required for extensive work in modern

control system design. In addition, most of these programs

are hosted on different computer systems.

5. Standards

The developed routines must provide results consistent

with testing requirements which shall be described in

Chapter 2. Additionally, the routines must be well-

documented for subsequent developments. Finally, they shall

provide a well-designed human interface with so-call "user

friendliness" [6].

6. Approach

The following steps were followed during this thesis

investigation. .

S.~ 1. Literature Research. Study and review of the

5
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INTRODUCTION

literature on CAD and synthesis in modern control areas.

This included study of tools investigated by previous theses

[1,2,3,4,5] as well as tools found during this thesis

investigation [7,8,15,35,36,39,40,41]. Additionally, the

current version of ICECAP and TOTAL's routines will be

closely studied in detail. Finally, the use of VAX/VMS

operating system must be understood.

2. Requirements Analysis, and Routine Selection.

First, determine which functions are necessary in the system

and which options are of primary importance and require

early implementation. Second, analyze the existing routines

studied in step 1 and select the most suitable ones. This

is based mainly upon efficiency, numerical precision,

numerical stability, and adequate performance of routines.

3. Development and Implementation. This phase

consists of the following steps

3.1 Modify the routines selected in step 2 to meet
ICECAP's structure.

3.2 Develop the additional routines to meet the
modern control functional requirements as
described Chapter 2.

3.3 Incorporate the modified and developed ...
routines into ICECAP.

3.4 Test and modify if necessary in order to meet
the testing requirements which are described
in Chapter 2.

4. Design Documentation. Document all routines

- modified and developed during this investigation. This

6
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INTRODUCTION

documentation will be included in Appendix B. This will

serve as a convenient and useful documentation for

subsequent development of ICECAP's project.

7. Material and Equipment

All materials and equipments required to perform this

study are currently available in the Information Sciences

Laboratory of the AFIT, School of Engineering.

8. Overview of Thesis.

Instead of including all source code lists of modules

developed during this investigation, this thesis consists of

major chapters and appendices which contain documentation

of the developed modules. This shall be useful for follow-

on efforts. (Note : A complete source code listing of all

development modules is maintained in the AFIT Information

Sciences Laboratory. It can be generated whenever needed by

utilizing the information contained in Appendix B.)

In the interest of continuity, the first two chapters

of this thesis are structurally similar to Wilson's thesis

[5). A brief summary of each chapter and appendix is as

follows

Chapter 2 summarizes the requirements definition that

were first described in Reference (5]. Major emphasis is -

placed on the modern control functional requirements, since

this thesis develops and implements subroutines to meet

77
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.priority for the modern control functional requirements

portion are also described in this chapter. Finally, the

testing requirements for the entire system are presented.

Chapter 3 reviews ICECAP's structure and investigates

the various routines and algorithms available for this

project. The specific selections for these items are

established in this chapter and the reasons for those

selections are discussed and analyzed.

Chapter 4 discusses the system design in a broad

overview fashion. The selected routines and algorithms are

also presented explicitly. Finally, it describes the

process of incorporating the developed routines into ICECAP.

Chapter 5 details the ICECAP testing phase of the

investigation and presents the test results. The testing

philosophy is discussed followed by the testing of the

developed functions.

Chapter 6 presents the conclusions and recommendations

of this thesis effort.

Appendix A contains the railroad diagrams. This

railroad diagrams explain a formal description of the

acceptable language used in performing matrix operations.

Appendix B contains the subroutine descriptions of

non-trivial routines developed during this study.

S *t. .... ..
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CHAPTER 2

REQUIREMENTS '" '

1. Introduction

As mentioned in the Chapter 1, the main objective of

this study is to continue development and implementation of

ICECAP functional requirements involved in modern control

theory. For the sake of continuity, this chapter first

repeats the definitions of priorities and the annotation

standards of requirements as defined in Chapter 2 of [5].

Once these are established, the functional requirements

themselves are presented. These include those listed in

Chapter 2 of [5] and those established during this

investigation. Additionally, the human engineering and

software engineering requirements described in Chapter 2 of

[5] are also repeated here. This serves as a quick reference

of ICECAP's current state for follow-on efforts. After

providing a historical perspective, this chapter addresses

the priorities that are structured so that ICECAP is capable

of solving fundamental modern control problems. Finally,

the testing requirements for the entire system are discussed.

2. Definition of Priorities

The meanings of requirements priorities have been

categorized into one or more of three priorities in order to

facilitate partitioning the entire ICECAP project into a

meaningful development. The definitions of these priorities

=9%°



REQUIREMENTS

are described as follows

2.1 Priority One. This priority means that the

requirement must be at least partially contained in the

initial program design in order to have a running program

with which to demonstrate both feasibility and capability.

This may involve both requirements that are already

satisfied by VAXTOTAL (3] and requirements that are new to

ICECAP. This category generally includes all of the human

interface requirements, the incorporation of "on-line"

help/teach modules for the most important features required

for continuous time design and analysis, and software

engineering requirements. Continuous time features are

- considered a higher priority than the discrete time features

because students are normally taught the fundamentals of

continuous control systems prior to the study of discrete

control systems.

2.2 Priority Two. This priority includes requirements

that are at least partially implemented in VAXTOTAL (3] but

need not be initially implemented in ICECAP in order to

demonstate feasibility and capability. This category

generally refers to matrix manipulation features, and

discrete time design and analysis features.

2.3 Priority Three. This category includes functional

requirements needed to have a complete control system
computer-aided design package. It includes functional

210
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requirements related to the control system design area

presently within the state of the art but not yet

implemented. Examples are the stochastic estimation and

control requirements.

3. Requirements.

Definition. ICECAP will assist the user in performing

conventional, modern, and stochastic control system design

and analysis for both discrete and continuous systems.

Annotation Standards. ICECAP's requirements are

annotated in the following format (priority

classification(s), status) [reference(s)]. The priority

classification(s) is a number in the range 1-3. The status

44 is reflected in a capital letter if the requirement has been

fully implemented on ICECAP's structure; otherwise, the

letter appears in lowercase. The letters used are A, for

Gembarowski [4); B, for Wilson (5]; C, for Narathong [this

thesis]; D, for Armold [46); (E will be for the next follow-

on effort, then F etc.). Requirements yet to be addressed

are assigned the status "TBD" (To Be Determined). The

references refer to corresponding entries in the

bibliography. The interested reader can find the " -

theoretical principles that "spawned" the system

requirements by reading the cited references.

Listing. ICECAP's requirements can be grouped into

three main categories -- (1) functional, (2) human

.lit

2':- * *.* .... * . * .* * * * - * . - ...... *...* ...... . . .



REQUIREMENTS

engineering, (3) software engineering. The specific

requirements (along with their associate priorities,

implementation status, and applicable references) are as

follows

3.1 Functional Requirements. ICECAP shall provide the

following functional capabilities

3.1.1 Conventional Control

- Open Loop Transfer Function (1,A) [34,37]

- Closed Loop Transfer Function (1,A) [34,37]

- Forward Transfer Function (1,A) [34,37]

- Feedback Transfer Function (1,A) [34,37]

- Steady State Response Analysis (I,A,B)
4. [34,37]

- Transient Response Analysis (1,A,B) [34,37]

- Partial Fraction Expansion (1,B) [34,373

- Root Locus Analysis (1,A,B) [34,37]

- Laplace Transformation (2,TBD) [34,37,38]

- Inverse Laplace Transformation (2,B)
[34,37,38]

- Frequency Response Evaluation (2,B) [34,37]

- Time Response Plot (2,B) [34]

- Bode Plot (2,B) [34,37]

- Direct Polar Plot (2,TBD) [34,37]

- Inverse Polar Plot (2,TBD) [34,37]

- Nyquist Criteria (2,TBD) [34,37]

- Nichols Plots (2,TBD) [34,37]

12
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REQUIREMENTS i

- ouillemn-Truxal Design (2,a,b) [34

- Block Diagram Manipulation (2,A,B) (34,37]

3.1.2 Modern Control -''

Matrix Analysis [9,10,11,18,20,24,25,26,27,28,32] .

-Matrix Arithmetic

-- Matrix right division (2,C)

-Matrix left division (2,C)

-- Matrix transpose (2,C)

-- Matrix addition (2,C)

-- Matrix subtraction (2,C)

-- Matrix multiplication (2,C)

-- Raises matrix to powers (2,C)

- Basic Properties

-- Condition number in 2-norm (2,C)

-- Determinant (2,C)

-- Norm (2,C)

-- Rank (2,C)

-- Inverse (2,C)

-- Pseudoinverse with optional tolerance
(2,C)

-- Inverse Hilbert matrices (2,C)

-- Kronecker tensor product (2,C)

- Trancendental Matrix Functions

Arctangent (2,C)

-- Cosine (2,C)

-- Matrix Exponential (2,C)

13
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REQUIREMENTS

-- Natural logarithm (2,C)

-- Sine (2,C)

-- Square root (2,C)

- Decomposition and Factorizations

-- Cholesky factorization (2,C)

-- Eigenvalues and Eigenvectors (2,C)

-- Hessenberg or Tridiagonal Form (2,C)

-- Factor from Gaussian Elimination (2,C)

-- Orthogonal vectors spanning range (2,C)

-- Schur triangular form (2,C)

-- Reduced row echelon form (2,C)

-- Singular value decomposition (2,C)

Polynomial Operations

- Addition (2,C)

- Subtraction (2,C)

- Multiplication (2,C)

- Division (2,c)

- Raise polynomial to powers (2,C)

Optimal Control Design [12,22,23,37]

- Algebraic Riccati Equation (ARE) solver
(2,C)

- Riccati Differential Equation Solver
(2,c) [12]

-1

Transfer Function via C(SI - A) B (2,C)

State Feedback Design [34]

S- Phase Variable Representation (2,C)

" 14
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Plots (Z W S primary strip, time)
(2,TBD) 331
Simulation (Performance Against a

"Truth Model") (3,TBD) (29,31]

3.1.4 Stochastic Estimation and Control Design

Kalman Filter Design for Continuous and

Discrete Time Measurements (3,TBD) [29]

Analysis of Kalman Filter Design (3,TBD)
(29]

Square Root Filtering (3,TBD) [29]

U-D Covariance Factorization Filtering
(3,TBD) [29]

Weiner Filtering (3,TBD) £29]

Optimal Smoothing (3,TBD) £30]

LQG Controller Design for Continuous and
Discrete Systems (3,TBD) [30,31]

LQG/LTR Method (3,TBD) [31]

Observer and Full-State Feedback Controller
via Pole-Placement Methods (3,TBD) [30,31]

Extended Kalman Filter Design (3,TBD) [30]

Simulation (Performance Against a
"Truth Model") (3,TBD) [30,31]

3.2 Human Engineering Requirements. ICECAP shall be

user "friendly" in that human factors will drive the design

of the human/computer interface [6].

3.2.1 ICECAP shall provide on-line assistance upon

demand. (l,2,3,B,C)

3.2.2 ICECAP shall be command-oriented. It will

assist the user in formulating commands. This assistance
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shall not be distractive. It shall not impede those users

who do not need on-line assistance. (l,BC)

3.2.3 ICECAP shall provide instruction in the

various aspects of control theory through some sort of

teaching facility. (2,3,b)

3.2.4 ICECAP shall notify the users when they have

erred in providing input by using meaningful error messages.

(IB)

3.2.5 ICECAP shall provide a facility for

providing meaningful and selective printed output as the

means of documenting the users' design of control systems.

(l,B,C)

4.- 3.2.6 ICECAP shall provide a means of storing the

essentials of a design in progress so that the users may

continue their designs at future sessions. (1,B,C)

3.2.7 ICECAP shall provide a capability for the

users to define command strings so that they may iterate a

design without having to type in the same commands

repeatedly. This shall include a facility for the users to

specify data as part of the command string. (2,TBD)

3.3 Software Engineering Requirements. ICECAP shall

be designed and documented using sound software engineering -7

principles such as those advocated in the software

engineering literature [6,17] so that the program can be

easily maintained and augmented. The following requirements

17
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address these concerns

3.3.1 ICECAP shall be as portable as reasonable

(i.e. capable of being rehosted on other VAX's). (1,C)

3.3.2 ICECAP shall be modular. (l,A,BC)

3.3.3 ICECAP shall use loosely coupled modules as

much as possible. (l,a,b,c)

4. Priority Definition and Determination

Due to time constraint, this one project cannot develop

the modules that solve all aspects of modern control

problems. Thus, it is necessary to facilitate partitioning

the modern control functional requirements [described in

Section 3.1.2) into priorities. The priorities are

structured so that ICECAP is capable of solving basic modern

control problems. Such functions are included in the

framework of priority one modules. Priority two then

follows and consists of the remainder of the modern control

modules. The following list indicates the initial priority

established for ICECAP's modern control functional

requirements.

Priority One Modules. These are the priority one

requirements which partially come from Section 3.1.2. These

modules are essential for basic modern control system work.

- All requirements for matrix analysis

- Polynomial Operations
-1

- Transfer function via C(SI - A) B -7

18
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- Algebraic Riccati Equation (ARE) Solver

- State Variable Feedback Design

-- Using Phase Variable Representation

Generally, matrix and polynomial operations are

considered part of modern control theory and are presented

here as priority one. The reason for this is that they are

basic mathematical tools useful in many disciplines. A

system that provides assistance with this process would be

quite beneficial and warrants assignment of a higher

priority than that associated with modern control. Transfer

function via C(SI - A) B, ARE solver, and state variable

feedback design using phase variable representation are

generally considered to be a fundamental modern control

design concept and are usually taught before other advanced

modern control designs. They are therefore included in

priority one.

Priority Two Modules. This priority consists of the

remainder of the modern control functional requirements

described in Section 3.1.2. These modules enhance advanced

modern control design and provide additional design and

synthesis capability.

These requirements may not be complete. However, they

are representative of the kinds of essential functions for

the system to be useful as a modern control design tool.

19
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5. Testing Requirements.

This section discusses the testing requirements of the

ICECAP that were first described in Chapter 2 of Reference

[5]. Modifications are made to the modern control

functional testing requirements, in order to ensure that

the modules developed during this study provide validation

of numerical results.

5.1 Functional Requirements. The modern control

functional requirements that have been implemented shall be

tested using known test cases, such as those examples

presented in References (8,12,34,39]. The numerical results

are expected to have small discrepancies due to the

numerical round-off error in computer wordlength. Note that

ICECAP is hosted on a VAX 11/780 which has only a 32-bit

wordlength.

5.2 Program Flow. All developed programs shall be

tested to determine whether or not the program runs

properly. The program must transition to valid known

states. The program must not hang in an endless loop. The

ability to exit "gracefully" from the program must be

demonstated.

5.3 On-line Assistance. The ability of the intended

user to formulate the commands necessary to design and

analyze a control system with on-line assistance that is

provided must be demonstrated.

20
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5.4 Output Capability. The ability to document and

store a control system design and analysis session

selectively and conveniently must be demonstrated.

6. Summary

The system requirements specification for the ICECAP

project is presented in accordance with Reference [5].

Priority categories and the status of implementation

classifications were documented by Wilson's effort (5].

This thesis adds the modern control functional requirements

that were not initially included in previous development.

Additionally, the definition and determination of priority

for the modern control requirements portion are presented

explicitly. Finally, the testing requirements initially

defined by Wilson [5] are presented.

21
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CHAPTER 3

ICECAP' s STRUCTRUE, ROUTINES AND ALGORITHM SELECTION

1. Introduction

In designing ICECAP, emphasis was placed on making the

system "user-friendly". For example, many of the prompting

features were integrated into the system so that a new user

can quickly learn and really "enjoy" using it.

In contrast to the past efforts (3,4,5], greater

emphasis is placed on expanding the functional capabilities

of the system. In particular, the modern control functional

capability is developed and implemented. This chapter begins

with a review of the previous design as it relates to the

Human Interface and its component areas. It then discusses

the routine and algorithm selection which are somewhat

dictated by previous designs and other contraints such as

cost and procurement of the routines.

2. ICECAP's Structure

The design foundation for ICECAP relies on the

following requirements as stated in Chapter 2.

-- The system shall be user-friendly.

-- The system shall be easy to use.

This section reviews the design of the system as its

relates to the Human Interface and its component areas.

These areas have direct impact on incorporating the new

modules on the system. Other areas of the design were

22
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ICECAP's STRUCTURE, ROUTINES AND ALGORITHMS SELECTION

discussed in [5]. The specific areas reviewed are:

2.1 Program Control - how the user manipulates
execution of the program.

2.2 Help - on line assistance

2.3 Information Transfer - the program's response
to the user

2.4 Program Parameter Control - the user's ability
to view and alter the system control parameter

2.1 Program Control

ICECAP was designed to have the user entering commands

into the system which then cause the system to execute its -

function. Each word was selected so as to define the

intended action accurately. Each action has one or several

j words associated with it. For instance, the command words

necessary for plotting a root locus are "PLOT ROOT LOCUS".

The system decodes the words and, once decoded, the commands

are translated. The translation is then passed to a set of

modules that actually execute the command. The overall

program transform was developed by Logan [3] as shown in

Figure 1.

2.2 Help Capability

ICECAP was designed to be user friendly. An aspect

which helps ICECAP become user friendly is the availability

of on-line assistance. Help is provided in the sense of

"help upon demand". The design structure for the help

_ process was discussed in (5] and is repeated here for

continuity.
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2.2.1 Invalid Command Response. If the user has

entered an invalid command, the system responds with a

ICECAP

_ I _ ___ ____ I _
READ COMMAND INTERPRET COMMAND EXECUTE COMMAND

PROVIDE ON-LINE
ASSISTANCE

FIGURE 1. ICECAP's FRONT-END STRUCTURE

message as to the nature of the error and then the user is

given the opportunity to reenter the erroneous portion.

2.2.2 Incomplete Command Response. If the user has

entered an incomplete command, the system responds with

choices for the next command word. The design structure

allows a short explanation of the nature of each of the

choices. The user then simply types in one of the listed

choices.

2.2.3 Complete and Valid Command. If the user has

24
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ICECAP's STRUCTURE, ROUTINES AND ALGORITHMS SELECTION

entered a command that is both complete and valid, the

system responds by executing the command.

2.3 Information Transfer

The information that ICECAP transfers to the user

consists of data such as points on a root locus diagram,

frequency and/or phase response plot, and figures of merit.

These data are conveyed to the user by using any of the

standard output available to the computer such as the CRT

and line printer. ICECAP also offers a choice of presenting

the information in tabular or graphical form. Additionally,

it allows the user to review all outputs before printing out

on the line printer. Finally, ICECAP has the ability to

store files of intermediate results so that the user can

continue his/her work at other sessions.

2.4 Program Parameter Control

ICECAP includes system parameters which control the

execution of the routines within the system as, for example,

boundaries for root locus and frequency response plots, step

sizes for calculating root locus, and output and input

selections. Some of these parameters were hard coded into

the software, but ICECAP still allows the user to change

these parameters as desired. The change will affect the

computations from that point on.

3. Routine and Algorithm Selection

-_ This section discusses the selection of the new
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ICECAP's STRUCTURE, ROUTINES AND ALGORITHMS SELECTION

routines for matrix analysis and algorithm for other modern

control functions.

3.1 Routine Justification and Selection

There are existing FORTRAN subroutines that do matrix

operations, such as, the EISPACK [36] and LINPACK [35)

software packages. These two packages represent the state

of the art in matrix computational methods. EISPACK is a

package of over 70 FORTRAN subroutines for various matrix

eigenvalue computations. LINPACK is a package of 40 FORTRAN

subroutines for solving and analyzing simultaneous linear

equations and related matrix problems. The subroutines from

these two packages provide assistance with a basic

mathematical tool that can be used to perform modern control

functions. Presently, these two packages are already

integrated in several computer-aided design programs, for

example, CTRL-C [41], MATRIXx [40], LQGLIB [39], and MATLAB

[7]. Unfortunately, all of these programs except MATLAB are

commercial and the source codes are not released. MATLAB is

available without constraints. The program was originally

developed by Cleve Moler at the Unversity of New Mexico. It

was written as a convenient tool for computations involving

matrices. Additionally, it also provides access to the

LINPACK and EISPACK software. The capabilities range from

standard tasks such as solving simultaneous linear equations

and inverting matrices, through symmetric and nonsymmetric

26
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eigenvalue problems, to fairly sophisticated matrix tools

such as the singular value decomposition.

Based upon a comparison of cost and capabilities of

existing programs, MATLAB (with the LINPACK and EISPACK

subroutines) is considered the best choice. Its computation

routines will be used for lower-level modules while its

front-end (see Section 2 in Chapter 4 for more detail) can

be used to accept input matrices.

3.2 Algorithm Selection

Again, there are existing routines within TOTAL and
-I

ICECAP that solve the Riccati equation, compute C(SI - A) B,

and do polynomial operations. However, these routines are

somewhat out of date. For example, those routines that

solve Riccati equation in OPTCON [8] were coded based upon

the iterative algorithm [22]. Presently, several methods

are developed based upon matrix theory. These methods can

handle a large class of problem very well [12]. This thesis

surveys and discusses various algorithms as follows

3.2.1 Riccati Solver. The Riccati equation plays

fundamental roles in the analysis, synthesis, and design of

linear-quadratic-Gaussian control and estimation systems as

well as in many other branches of applied mathematics. Due

to the time limitations, this thesis only studied two of the

best algorithms, namely the Schur vector approach [12] and

the eigen number approach [42]. These two methods are quite

27
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ICECAP's STRUCTURE, ROUTINES AND ALGORITHMS SELECTION

3.2.3 Polynomial Operations. Similar to the case of
-1

C(SI - A) B computations, a new algorithm for polynomial

multiplication is developed. The routines in TOTAL are not

used since they do not match the MATLAB front-end, and more

importantly, those routines are poorly documented.

3.2.4 State Variable Feedback Design. This thesis

effort develops a new algorithm to perform this function.

This algorithm provides an adequate numerical accuracy

(see Section 4.4 in Chapter 5 for numerical results).

Chapter 4 presents this algorithm in detail.

4. Summary

This chapter discusses the previous system design and

the selection of new routines and algorithm. Two of the best

algorithms for solving ARE, namely the Schur vector approach

and the eigen number approach are discussed in detail. The

algorithm for C(SI - A) B function, polynomial

multiplication, and state variable feedback design are

developed. The detail of these algorithms are presented in

the next chapter.
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CHAPTER 4

IMPLEMENTATION

1. Introduction

In the previous chapter, MATLAB and the algorithm to

solve ARE were chosen. The algorithms that are not

available are developed during this study. The chapter

first describes the process of incorporating the new

routines into ICECAP. It then discusses how to

incorporate MATLAB into ICECAP and follows by presenting

the developed algorithms in detail. Finally, the

implementation of the developed routines is discussed.

2. Incorporating MATLAB

In the early design stage, ICECAP's structure was

designed to grow in a tree-like fashion so that new modules

could be easily added. However, the main driver of the

ICECAP, usually called the executive module, is not well -

implemented. For example, it consists of too many

submodules. These submodules are contained in one big file.

Therefore, whenever a change is made to a single module, all

other modules must also be re-compiled. In addition to

this, the executive interprets the user command and

translates it to an option number. The option number is

then passed to the FORTRAN modules which in turn execute

this option number just as if it had been entered by the

user using TOTAL. This implementation makes the program run --

30
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slower. Also, the executive module calls the VAX library

routine. This ties the program itself to the host

computer, which violates one of the requirement objectives. ""-

Since it is not the purpose of this thesis to make a

major modification to the executive module, eliminating the

deficiencies discussed above are suggested for future

students. This thesis, however, does employ a new way for

incorporating the new modules. The subsection below

discusses MATLAB's structure and the approach used in

incorporating it into ICECAP.

Appendix A includes a railroad diagram which describes

various syntactic quantities suach as command, expression,

term, and factor. These quantities are used in performing

matrix operations. The structure of the parser/interpreter

presented in Reference [7] is repeated in this thesis for

continuity. The structure of the parser/interpreter is

similar to that of Wirth's compiler [44). The interrelation

of the primary subroutines is shown in the Figure 2. The

detailed description of each subroutine can be found in

Appendix B.

Subroutine "Parse" controls the interpretation of each

statement. It calls subroutines that process the various

syntactic quantities such as command, expression, term and

factor (see Appendix A for the definition of these

quantities). A fairly simple program stack mechanism allows

31
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MAIN

MATLAB CIjUSE

PARSE - EXPR-TERM-FACTOR

STACKi STACK2 STACKG

STACKP-PRINT

-COMAND

-WGECO

-WGEFA

MATFN. WGESL

WGEDI

-WPOFA-

IMTQL2

-HTRIDI
MATFN2- HTRIBK

rCORTH
COMQR3

MATFN3 WSVDC

-WQRDC

:WQRSL

_[::FILES
MATFN5 -

i-SAVLOD

FIGURE. 2 MATLAB'S STRUCTURE
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these subroutines to "call" each other recursively. The

four stack subroutines, namely STACKI, STACK2, STACKP, and

STACKG, manage the variable memory and perform elementary

operations, such as matrix addition and subtraction. The

four subroutines MATFNI though MATFN4 are called whenever

"serious" matrix computations are required. They are

interface routines which in turn call the various LINPACK

and EISPACK subroutines. MATFN5 primarily handles the I/O

file operations. Two large double precision real single

arrays, STKR and STKI, are used to store all the elements of

matrices. Real numbers are stored in STKR and for complex

numbers, the real parts are stored in STKR while the

imaginary parts are stored in STKI. Four integer arrays,

namely IDSTK, MSTK, NSTK, and LSTK are used to store the

names, the row and column dimensions, and the pointers into

the stacks, respectively. TOP and BOT integer variables are

used to indicate whether the stacks are full or not. Figure

3 illustrates this storage scheme. The top portion of the

stack is used for computation working space while the bottom

portion is reserved for saved variables. The figure shows

the situation after the line -

A = <11, 12 ; 21, 22>, X =<3.14 ; SQRT(-l)>

has been entered to the MATLAB program (Notice that a

semicolon is used to separate each row). The two variables,

A and X, have dimensions 2 by 2 and 2 by 1 and so take up a

33
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TOP IDSTK MSTK NSTK LSTK STKR STKI

III-I 1 1- ID I I-I IlI III I-I 1 I I I::

I-1 I- I I I I_-I I-I I-I II 1 I I . :___

I-I IC I IC I I-I I-I III -- I-I I I I

I-~I~I! I-I II II I1 I1 I- I 14I I TTUDWI

I-II Ill II2I I] I- I \ IT I I-- -IZ 1 . j I .1 I I I Iir I---I f- 11o I __ooo,.__ -

IIE-151 I 0.00 I

0.00 I I 0.00 .
\ VT- 7 I.O I~oT."

FIGURE. 3 MATLAB's DATA STRUCTURE

total of 6 locations. Notice that MATLAB accepts A and X by

rows, but it stores them internally by columns. The

subsequent statement involving A and X will result in

temporary copies being made to the top of the stack for use

34
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in the actual calculations. The four permanent names, EPS,

FLOP, RAND, and EYE, occupy the last four positions of the

variable stacks. RAND has dimension 1 by 1; its value is

provided by a random number generator. EYE has dimension -1

by -1 to indicate that the actual dimensions must be

determined later by context.

The modular structure of MATLAB (see Figure 2) makes it

possible to implement it on ICECAP. The implementation is

accomplished by using the syntax diagram for two specific

commands, the DEFINE and DISPLAY commands. These two

commands were originally chosen by Gembarowski [4]. The

syntax diagram was developed as a tree-like structure

@ wherein each module displays the choices that are

appropriate for the command that has been partially

formulated. For instance, in formulating the command DEFINE

MATRIX, the Pascal procedure DEFINE calls Pascal procedure

DEFINEPROMPT, if necessary, in order to prompt the user as

to valid choices for the second word. Once the valid

command string is formed, the MATLAB parser routine is

called directly and the user is in the MATLAB program which

is considered to be a lower level of ICECAP. In this level,

the user can utilize all MATLAB commands and all data

entered in this level are stored in the MATLAB's data

structure. The reason for this implementation is that the

main menu is getting bigger as ICECAP is getting larger.
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There is no place to store large matrices, such as 5Ox5O

matrices, in ICECAP data structure. Therefore, it is

necessary to step down to a lower level.

The structure of MATLAB permits the user to define the

names of variables as opposed to ones strictly defined by

the program. This is very useful. For example, in

multiplying two polynomials, the user can multiply them and

save the result by simply giving it the new name. This

eliminates the copy command (i.e. copy POLYA to POLYD option

66 in TOTAL). Additionally, and more importantly, the data

will be allowed to pass from MATLAB's data structure to

ICECAP's data structure or vice versa. This gives the user

an ability to compute, for example, the open-loop transfer

function in a lower level and to use this transfer function

for other controller design in the upper level without

retyping.

3. Implementing The Algorithm

3.1 Riccati Solver. It is not the purpose of this

thesis to present the theory that supports the eigen number

approach. The interested reader may refer to Reference

[421. This section mainly considers numerical issues such

as algorithm implementation, timing, storage, and stability.

To solve the optimal control, consider a dynamic system

X = AX + Bu ; Y = CX (1)

and a cost function

36
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J ( XQX + u R u) dt (2)

where Q and R are weighting matrices

The problem is to compute the feedback matrix, K, so that

u = -KX (3)

minimizes Eq (2) subject to the differential constraint of

Eq (I).

K is given by
-1 T

K = R B P (4)

where P is the solution to the steady state Riccati Equation

T -I T
A P + PA - PBR B P + Q - 0 (5)

and the dimensions of matrices given by

A,P,Q all are n-by-n

B is n-by-r

R is r-by-r.

The eigen number approach is used to solve Eq (5). The

algorithm is presented as follows

1. Form

2nx2n
S R

T

-Q A_

where -1 T

D - BR B

2. Compute the eigenvalues of S i.e. Solutions to

IAI SI 0
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IMPLEMENTATION

3. Select the n eigenvalues with positive real part

4. Form a polynomial of order n using the eigenvalues

selected in step 3; i.e.,

n n-i
P (s) = s + a s + .... + a s + a
n n-I 1 0

5. Form a 2nx2n matrix Z using the coefficients of the

polynomial in step 4 and S in step 1; i.e.,

n n-i n-2 2nx2n
S +a S + a S +... +aS + a I Z R

n-I n-2 1 0

6. Partition Z as

U M
nxn nxn

V N
nxn nxn

7. Compute

P =M U

P =N V
2

-I

P = -V U
3

P = -N M
4

where P , P , P P all are solutions to (5)
1 2 3 4

A unique solution of equation (5) for a positive

.- definite P exists if the matrix Q is positive definite (34].
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The inverse of M, N, V may not exist when Eq (5) is known to

be "ill-conditioned" (12]. There is no guarantee that one of

those solutions computed in step 7 will be positive

definite. However, from the results of testing of the

algorithm, the positive definite solution is most likely

obtained with selecting n eigenvalues having positive real

part (step 3). If the positive definite solution is not

obtained, step 3 must be repeated. That is selects another

n eigenvalues and repeats step 4 thru 7. This process is

repeated until the positive definite is obtained. However,

the existance of a uniqueness of positive definite solution

condition should be checked before computing the solutions.

Good estimates of the condition number of U,, M, and N

with respect to inversion are computed by the MATLAB linear

equation software with estimates being inspected during

computation. For an "ill-conditioned Riccati equation" U,

M, and N may have no inverse. Methods for computing

solutions for such cases are discussed further in Reference

[48].

With respect to storage considerations the algorithm

requires at least two 2nx2n arrays. The overall process is

quite stable numerically (see Section 4.1.2 in Chapter 5)

and as indicated above if U, M, and N are not invertible, it

is still possible to compute the solutions.

Once the positive definite solution is obtained, the
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feedback matrix, K, can be computed by using Eq (4).

Then, the closed-loop matrix can be computed as

A = A-BK (6)
ci

where
A is the closed-loop matrix
cl

Finally, the closed-loop matrix can be used to compute the

closed-loop transfer function as

-I

G (S) = C(SI -A ) B (7)
cl cl

MRIC is coded to solve this optimal control problem.-Ili

3.2 The algorithm for C(SI - A) B provides the

numerator and denominator polynomials of the transfer

function for a single-input single-output system of Eq (1).

In order to compute the numerator polynomial, it is

necessary first to have available the coefficients of the

characteristic polynomial, which is obtained by computing

the determinant of (SI - A); i.e.,

n n-1 n-2

SI-A = S + a S + a S + a S + a
n-I n-2 1 0

Once the denominator is obtained, numerator coefficients can

be computed as follows
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b = CB
n

b f CAB + a CB
n-i n-i

2
b CA B + a CAB + a CB
n-2 n-i n-2

etc.

This algorithm is short and simple since a FORTRAN DO

loop can generate b's. The subroutine TRFF is coded to
-l

compute this C(SI - A) B function.

3.3 Polynomial Operations. The addition and

subtraction of polynomials are accomplished by calling

subroutine STACK2. Multiplication is coded using the

algorithm shown below

n n-I n-2
P (X) = X + a X + a X +.... + a S +a
1 n-I n-2 1 0

n n-I n-2
P (X) = X + b X + b X +.... + b S + b
2 n-i n-2 1 0

1 . -1 be_, b . 2 .... bo- 1 be., b, 2  .•. b..

a.., a n-, a_, bnI anI be. , a, b

a. ,_a 2 a - be_ I a. b,_- a, -b"

a0  a a b a b... a b
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P(X)xe(X) .
2

n n-I n-2
X +(a + b )X + (a + a b + b )X + ... +a b

n-I n-i n-2 n-I n-I n-2 0 0

The subroutine MPOLY is coded to perform this polynomial

multiplication.

3.4 State Variable Feedback Design. Modern control

theory introduces the concept of using all the system states

to provide the desired improvement in system performance.

The state variable feedback concept requires that all states

be accessible in a physical system, but for most systems

this requirement is not met; i.e., some of the states are

inaccessible. A technique for handling systems with

inaccessible states is presented in [31,34]. The state

variable feedback design method presented in this section is

based upon achieving a desired control ratio for a single-

input single-output system; i.e., it is a pole placement

technique.

As mentioned previously, this thesis investigates the

state variable feedback design using phase variable

representation. The main objective is to provide a state

feedback gain corresponding to the desired closed-loop

transfer function. Due to the ease of using phase variable

representation, the state equation in physical variables is

-- transformed to a phase variable form. The solution is
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transformed back to physical variables for actual

implementation on digital computer. The algorithm for this

is shown below

1. Given A, B, C matrices, the open loop transfer
function, G (S) can be computed by

ol
w w-1

-1 K9(S + b_S + + b1 S + b0 )
G (S) - C(SI -A) B n °_,
ol S + a S + ... + a S + a

n-I 1 0

KgN(S)

Q(S)

where K is an open loop forward gain and w < n
9

The desired closed-loop transfer, G (S) is given byci .

K SN (S )• ; "

G (S)
cl Q (S)

cl

n A n-i A A

where Q (S) - S + a S +... + a S + a
cl n-I I 0

2. The system error is defined by

e(t) = r(t) - y(t)

For a zero steady state error,e(t)ss = 0, the steady

state ouput must be equal to the input; i.e.,

y( t -- r(t)

thus, Kg can be computed as
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a.
K

g bo

3.A

n K9

where, K is a n-th state feedback gain in phase
n

variable form.

4. Compute the transformation matrix, T, that needs phase

variable form and the original form given in A, B, and C

as

T B
n
T = AT + a B
n-i n n-i

T = AT + a B
n-2 n-i n-2

etc.

T T JT T......T
1 2 n

5.

K =KT

MODERN is coded to perform this state variable feedback

design function.
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4. Incorporating the Developed Routines into ICECAP

4.1 Riccati Solver. To incorporate subroutine MRIC

into ICECAP, a new command was added to the ICECAP second

level menu. At this level, most of the commands are used to

display results. For example, commands like DISPLAY SPECS,

DISPLAY EQUATION are used to signal the FORTRAN modules to

do computations and display results. With the same idea,

DISPLAY RICCATI will signal MRIC to solve the Riccati

equation. Additionally, if the solution is positive

definite, MRIC will automatically compute the feedback

matrix gain and the closed-loop matrix. The closed-loop

matrix then can be used to compute the closed-loop transfer

function by utilizing the subroutine TRFF. This

implementation avoids adding too many commands into the

main menu.

-I

4.2 C(SI - A) B function. TRFF is implemented in

ICECAP in a manner similar to that used for the Riccati

solver routine. The command was chosen to be TRANSFER/F.

This command is again added to the second level menu.

4.3 Polynomial Operations. Unlike MRIC and TRFF,

polynomial operations are implemented directly in MATLAB.

That is, all polynomial operations will take place in the

MATLAB parser routines. This implementation was used to

avoid adding another command to the ICECAP menu.
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Additionally, the user is allowed to defined polynomial

names and to perform polynomial operations sequencially

without laborious separate steps.

4.4 State Variable Feedback Design. The MODERN

subroutine is implemented in ICECAP in the same manner as

MRIC and TRFF. The command was chosen to be MODERN. Again,

two parts of command string, namely DISPLAY MODERN, must be

formulated. MODERN is called directly and the user can

then perform state feedback controller design using the

MODERN subroutine.

At this point all development routines have been

incorporated into ICECAP. Figure 4 shows a summary

structure chart of the system's software construct.

I I
ICECAP -

I 1 TOTAL

STATE VARIABLE -1 RICCATI SOLVER
FEEDBACK DESIGN C(ST-A) B & DETERMISTIC

REGULATOR DESIGN

FIGURE 4 MODIFIED ICECAP'S STRUCTURE CHART
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5. SUMMARY

In this chapter MATLAB's structure and the

implementation of MATLAB in ICECAP were discussed. Details

on specific commands of MATLAB were not presented. Those

who are interested in MATLAB commands may refer to Appendix

C and Reference [7]. Additionally, the algorithms of

special routines were presented. Deeper understanding of

the algorithms can be obtained from References [42,47].

Finally, implementing of the developed routines on ICECAP

were presented. The details of each subroutine are shown in

Appendix B, Subroutine Descriptions.
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CHAPTER 5

TESTING AND RESULTS

1. Introduction

The testing of the MATLAB program and the

development routines was accomplished concurrently with

subroutine code development and implementation. As problems

were discovered, they were analyzed for sources of error,

and solutions were developed and implemented. These

solutions were tested for problem corrections prior to

continuing with development. In this manner, errors were

not accumulated, thus making it much easier to accomplish

final testing.

This chapter discusses the testing of the integrated

part of ICECAP. The first section begins with testing

philosophy. The next section deals with testing of the

ICECAP-MATLAB portion which includes the initialization

routine, command interpreter, commands and functions, and

help module. The final section deals with testing and the

validation of numerical results from the Riccati solver,

C(SI - A) B function, polynomial operations, and state

variable feedback design routines.

2. Testing Philosophy

Testing of a software system is the process of

evaluating the performance of the program to insure that it

is functioning as intended. Testing is not always a
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distinct entity or process, rather it usually overlaps with

other phases of development such as design and

implementation. In this development, testing is

accomplished to insure that the results obtained conform to

the ICECAP design goals. Additionally, results using the
-1

Riccati solver, C(SI - A) B function, polynomial operations,

and the state feedback design function must conform to the

results obtained from other verified control system design

program such as LQGLIB [39] using standard examples of

Reference [7,12,34]. The test process used for this project

is as follows

* Verify syntax of routines

Accomplish manual logic analysis to insure program
as written approaches problem in proper way.

* Trace through code with known variables and known
results to insure the coding produces the desired
results.

* Display program variables at key spots to insure

they agree with the precalculated number/results.

These methods provides an efficient means of detecting

program errors and instituting corrections. The testing

process and results are now discussed.

3. Testing ICECAP - MATLAB Portion.

3.1 Initialization. The testing of the initialization

module is accomplished in two steps. First the program is

run to verify that the initialization module sets various

-- control flags as well as setting variables to their initial

49
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values correctly. The results are satisfied when all

initial values of variables and control flags are properly

established. Second, the following areas are evaluated for

the terminal initialization.

* Screen Clear - indicated by screen clearing
before any other actions.

* Highlight and - indicated by proper part of menu
Nohighlight being highlighted.

Again, the results are verified.

3.2 Command Interpreter. The command interpreter is

tested in the following process

* First line of instructions properly displayed

* Menu displayed

* Prompt displayed

* User cannot backspace past point where string has
zero length.

User can use either upper or lower case letters.

* Prompt redisplayed if command is incorrect.

* Error message displayed for incorrect command.

* User can use multiple commands.

Results All of the above characteristics are confirmed

'good'.

3.3 Commands and Functions. The following commands and

functions are tested.

- Commands

* HELP - Help options are displayed.
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* KILL - Erase all variables, except EPS, FLOP,
EYE, and RAND.

* EXIT & $ - Terminates MATLAB level and return
the user to the system.

* LONG - The output of 15 digits accuracy is
displayed.

* SHORT - The output of 4 digits accuracy is
displayed.

* MENU - The commands and functions are
displayed.

* DIR - All current variables are displayed.

* WHY - Various answers to any questions are

displayed.

* CLEAR - The screen is clear.

Results All of the above commands are confirmed 'good'.

- Functions. Using A, a real matrix of appropriate
order and x, a number.

* INV(A) - inverse

* DET(A) - determinant

* COND(A) - condition number

* RCOND(A) - a measure of nearness to
singularity; i.e, if A is well
conditioned, RCOND(A) is near 1.0.
If A is badly conditioned,
RCOND(A) is near 0.0.

* EIG(A) - eigenvalues and eigenvectors

* SCHUR(A) - Schur triangular form

* HESS(A) - Hessenberg or tridiagonal form

* POLY(A) - characteristic polynomial

* SVD(A) -singular value decomposition
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* PINV(A,EPS) - pseudoinverse with optional
tolerance

* RANK(A,EPS) - matrix rank with optional

tolerance

* LU(A) - factors from Gaussian elimination

* CHOL(A) - factor from Cholesky
factorization

* QR(A) - factors from Householder
orthogonalization

* RREF(A) - reduced row echelon form

* ORTH(A) - orthogonal vectors spanning range
of A

* EP(x) - E to the x

* LOG(x) - natural logarithm

* SQRT(x) - squart root

* SIN(x) - sine

* COS(x) - cosine

* ATAN(x) - arctangent

* ROUND(A) - round the elements to nearest
integer

* ABS(A) - absolute value of the elements

* REAL(A) - real parts of the elements

* IMAG(A) - imaginary parts of the elements

* CONJG(A) - complex conjugate

* SUM(A) - sum of the all elements

* PROD(A) - product of all the elements

* DIAG(A) - extract or create diagonal
matrices

* TRIL(A) - lower triangular part of A

52
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• TRIU(A) - upper triangular part of A

* NORM(A,F) - norm with F - 1,2 or 'infinity'

* EYE(M,N) - a M by N matrix with l's on the
diagonal and zero elsewhere.

* RAND(MN) - matrix of M by N with random
entries

* ONES(M,N) - matrix of all ones

* MAGIC(N) - interesting test matrices

• HILBERT(N) - inverse Hilbert matrices

* ROOTS(C) - roots of polynomial with
coefficients C

* DISPLAY(A,P) - print base P representation of A

* KRON(A,B) - Kronecker tensor product of A
and B

* PLOT(X,Y) - plot Y as a function of X

* RAT(A) - find 'simple' rational
approximation to A

* SAVE('file') - stores all the current variables
in a file

* LOAD('file') - retrieves all the variables from
a file

* PRINT('file',X) - prints X on a file

* DIARY('file') - makes a copy of the complete

session

Results All functions above perform properly.

3.4 Help Module. The help module provides on-line

assistance to the user. It is tested with the following

attributes
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* Program responds to request with correct information;
indicated by verifying that proper Help information
is displa yed.

* User can abort Help by inputting a '$' at the end of
Help information; indicated by return to command
level.

Results : The above attributes are tested satisfactory.

4. Testing ICECAP - Development Modules.

4.1 Riccati Solver Module Testing. The Riccati solver

testing scheme involves additional testing for numerical

accuracy, speed, and numerical stability in addition to its

logical evaluation of program flow and function. The

following characteristics are tested in the Riccati solver

module.

* Accepted input matrices' names correctly

* Numerical results are correct -- indicated by
comparison with data from known source or substitute
back to original equation.

* Help facility is working properly -- indicated by
Help information is displayed correctly.

Results The above characteristics test satisfactory.

4.1.1 Numerical accuracy and Speed testing. To

achieve this testing scheme, the Riccati solver module and

MATLAB program were transported to a better and bigger

machine (better in a sense of machine speed and bigger in a

sense of longer wordlength). The CDC Cyber 750 is used to

serve this testing purpose. It also hosts the LQGLIB [39]

software which solves the Riccati equation using the Schur

vector approach. The results from both programs can be
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compared both in speed and in numerical accuracy.

The example used to test is taken from a paper by

A.J. Laub [12). The Riccati equation is

T -I T
A P + PA - PBR B P + Q = 0

where all matrices are of order 9x9 and are given by

-1 0 0 0 0 0 0 0 0
1 0 -1 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0
0 0 1 0 -1 0 0 0 0

A = 0 0 0 0 -1 0 0 0 0
0 0 0 0 1 0 -1 0 0
0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 1 0 -1
0 0 0 0 0 0 0 0 -1

~~0
1

-I T 0
D BR B 0 1

0

1 0
1 0

0
10

01100

10 0
00

1010

0 0
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The 15 digits accracy of P from LQGLIB and MATLAB are

compared in Figure 5. The solutions agree to at least 10

significant figures. Notice that only the first column of P

is compared. The complete solution is available from the

author.

LQGLIB using MATLAB using

The Schur Vector Approach The Eigen Number Approach

1.363020693809055 1.363020693808967
2.617215472388267 2.617215472388186
-.705427341233047 -.705427341232968
.936859701733908 .936859701733909

-.293666431891451 -.293666431891415
.477353860639198 .477353860639186

-.197375089533067 -. 197375089533054
.211211652357913 .211211652358004

-.166551831151505 -.166551831151530

FIGURE 5 SOLUTIONS TO RICCATI EQUATION 9x9 SYSTEM

Substitution of a full 15 decimal place solution from LQGLIB

into the Riccat equation gives a residual on the order of
-14

10 while the residual for the solution from MATLAB is on
-26

the order of 10. Both programs used FORTRAN5, but MATLAB

used double precision while single precision is used in

LQGLIB (Note that it is not practical to convert double

precision to single precision for the entire program). For

a speed comparison, LQGLIB is much faster than MATLAB, which

we shall see in Table 1. The speed of MATLAB is very slow
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since it has to multiply matrix of order 2nx2n n times,

which is considered to be the most time consuming part of

the algorithm (see Table 2). This is probably the worst

aspect of algorithm.

TABLE 1

A TIME COMPARISON OF LQGLIB AND MATLAB

MATRIX SIZE CPU (sec.)

LQGLIB 2x2 0.007

9x9 0.175

20x20 1.444

MATLAB 2x2 0.069

9x9 4.497

____________1 20x20 62.440

TABLE 2

TIME ELAPSED IN EACH PROCESS RUN ON VAX 11/780

Matrix Form R and compute Sort eigenvalues Matrix -1 Total
size eigenvalues and form polynomial Multiply P=M U time

in sec in sec in sec in sec in min

9x9 7.20 0.05 5.64 0.32 00:13
20x 2O 7.21 0.15 135.75 1.37 02:30
30x30 23.39 0.27 778.11 4.15 14:45
40x40 54.95 0.51 2770.91 9.07 48:15
50x50 106.22 0.80 9402.13 18.95 2:25:52
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4.1.2 Numerical Stability Testing. The example

used to test is taken from the same source. All matrices

are of order 20x20 and are given by

-2 1 0 ... 0 1-
1 0
o 0

A =

o 0
0 1
1 0 0... 0 1 -2

-1 T

D = BR B = I

Q = I

The solutions were computed by MATLAB and checked against

the solution from LQGLIB. The solutions agree to at least

12 significant figures. They are shown in Figure 6.

th
A higher order Riccati equation, for example 50 order,

was also tested on VAX 11/780 since the Cyber has a

limitation on the allocated core memory. The solution was

substituted into the Riccati equation. The residual is on
-7

the order of 10. This is due to a 32 bits wordlength of

the VAX, for a large system, the accuracy begins to loose.

The numerical solutions are available from the author.

A comparison of the Schur vector approach and the eigen

number approach is summarized in Table 3.
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LQGLIB using MATLAB using

The Schur Vector Approach The Eigen Number Approach

p = .475050712641757 p = .475050712641716
11 11"

p = .503886212983314 p = .503886212983235
12 12

p = .171194090783836 p = .171194090783858
119 119

p = .226250904062361 p = .226250904062364
120 120

FIGURE 6 SOLUTIONS TO RICCATI EQUATION 20x20 SYSTEM

'..|

TABLE 3

A COMPARISON OF

THE SCHUR APPROACH AND THE EIGEN NUMBER APPROACH

Schur method Eigen number method

Speed fast slow

Storage at least two 2nx2n arrays same

Reliability handle up to 100 order same

Solution no guarantee of symmetry [12] symmetric guarantee

# of solutions produces one solution produces all solutions
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Since the Riccati solver module was also programmed to

perform the optimal control function, the test for this

particular part is conducted below : .

Problem 15-2 on page 714 of Reference [34] is used. The

problem statement is as follows

=X + Bu; = ; B=

_-2 -3 1 _ 0 2 0 1_

1 0 1 0
Y = 1I1 0 _1 X ; Q = ; Q = , Z=1

a 0 0 b 0 1

(a) Find the feedback coefficient matrix for this system

for each matrix B. Obtain solutions for each matrix Q

indicated. (b) For the matrix B , compare the time responses

for a unit step input.

The testing procedures are

1. DEFINE MATRIX i.e. enter A, B, B, Z, C, Q and Q
1 2 a b

2. DISPLAY RICCATI i.e. enter the names of input
matrices.

3. DISPLAY TRANSFER/F i.e. compute closed-loop
transfer function

4. COPY OLTF CLTF i.e. closed-loop transfer function
must be in CLTF

5. DISPLAY SPECS i.e. displayed fiqure of merit.

6. DISPLAY EQUATION i.e. display the output Y(t) with
unit step input.
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The solutions for part a) are

Using B Q gives
1 a

0.09850415 0.00742327
P-°

0.00742327 0.00155601

0.98504158
K =

0.07423273 "

Using B , Q gives
2 b

-0.77288396 0.09824936-
P -

0.09824936 0.19168385 _

K is the same as X

where P is the solution to Riccati equation
K is the feedback matrix gain

The solutions to part b) using B Q are shown in Figure 7.
1 a

The results agree to the solutions given on page 729 [34] to

at least 6 significant figures.

4.2 C(SI - A) B Module Testing. To verify the

validation of this module, the example taken from page 445 of

Reference [34] is used. The problem statement is as follows:

X 2 X 1 u

x -

Y = 1-0 1I x

Determine the transfer function Y(s)/U(s).

The test procedures are
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CLOSED-LOOP TRANSFER FUNCTION (CLTF)

CLK= ( CLNK/CLDK )= 10.0

CLTF (S) NUMERATOR

I CLNPOLY(I) CLZERO (I)
1 ( 1.000 )S** 1 C -3.000 ) + J( 0.OOOE+00)
2 ( 3.000 ) CLNK= 10.00

CLTF (S) DENOMINATOR

I CLDPOLY(I) CLPOLE(I)
1 ( 1.000 )S** 2 ( -9.774 ) + J( 0.OOOE+00)
2 ( 12.85 )S** 1 ( -3.076 ) + J( O.OOOE+00)
3 ( 30.07 ) CLDK= 1.000

CONTINUOUS TIME RESPONSE FOR CLTF(S)
WITH STEP INPUT OF STRENGTH = 1.00000

THE TIME FUNCTION IS
F(T) =

-1.0347 EXP(-9.7743 T)
0.36921E-01EXP(-3.0761 T)
0.99779 EXP(0.OOOOOE+OOT)

CONTINUOUS TIME RESPONSE FOR CLTF(S)
WITH STEP INPUT OF STRENGTH = 1.00000

RISE TIME: TR= 0.211244
DUPLICATION TIME: TD= 0.497606
PEAK TIME: TP= 0.670213
SETTLING TIME: TS= 0.354482
PEAK VALUE: MP= 1.001000
FINAL VALUE: FV= 0.997784

FIGURE 7. THE TIME RESPONSE OF UNIT STEP INPUT
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1. DEFINE MATRIX i.e. enter A, B, C

2. DISPLAY TRANSFER/F i.e. compute a transfer

function based upon A, B, C matrices

Note: The system will prompt with a message "ENTER YOUR

A,BC,D MATRICES :" D is a direct transmission matrix. For

this example, there is no D matrix. The system will assume D

equals 0 (its default value). The output is shown in Figure 8.

OPEN-LOOP TRANSFER FUNCTION (OLTF)

OLK = GAIN*(OLNK/OLDK)= 1.00

GAIN= 1.00

OLTF(S) NUMERATOR
I OLNPOLY(I) OLZERO(I)
1 ( 1.000 )S** 1 ( -1.000 ) + J( O.OOOE+O0)
2 ( 1.000 ) OLNK= 1.000 .

OLTF (S) DENOMINATOR -

I OLDPOLY(I) OLPOLE(I)
1 ( 1.000 )S** 2 ( -2.000 ) + J( 0.OOOE+00)
2 ( 3.000 )S** 1 ( -1.000 ) + J( O.OOOE+O0)
3 ( 2.000 ) OLDK= 1.000

FIGURE 8. THE OPEN-LOOP TRANSFER FUNCTION

The result is exactly the same as the one given in the

example [34] (cancel the zero and pole at -1.000).

4.3 Polynomial Operations Module Testing. This function

was tested by using the procedure summarized below:

1. DISPLAY MATRIX i.e. go to MATLAB level
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2. Enter the coefficients of polynomial from high to low.

2
X + 2X +1 -1 A =I 2 1>
2 B. =<l

X + 4X +4 - B=<I 4 4>

3. Performs the operations

A*B, A+B, A-B, A**3, etc.

The results are as follows

X = A*B X = 1 6 13 12 4

Y = A+B : Y = 2 6 5

Z = A-B Z = -2 -3

W = A**3 : W = 1 6 15 20 15 6 1

The results are checked against the results from TOTAL

(using polynomial options, the polynomial operations on

TOTAL have proved to be reliable polynomial operations).

The results are confirmed 'good'.

4.4 State Feedback Design Module Testing. To test this

module, the example on page 457 of Reference [34) is used.

The problem statement is as follows:

For a system shown below

R + U ri X lA - 5
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TESTING AND RESULTS

determine a feedback matrix gain K for a desired closed-loop

transfer function below:

Y(S) 100(S + 1.4)(S + 2)

R(S) S + 75S + 360S + 710S + 704S + 280

The testing procedures are

1. From the block diagram, determine A, B, C matrices

2. DEFINE MATRIX i.e. enter matrix A, then B,then C

3. DEFINE CLTF i.e. enter the desired closed-loop
transfer function (CLTF) model

4. DISPLAY MODERN i.e. compute the feedback gain K

Note on step 1

One may determine A, B, C as follows:

X = X X = -X+U

4 4 5 5

Fro ths•eutin, nmyrertetema

X =-X + X + 2X "'
2 2 3 3 )-

X =-5X + X ,:
3 3 4-..

X =-3X + X + 1.4X ."
4 4 5 5 "'

From these equations, one may rewrite them as

X = AX + Bu

Y = CX

That is
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TESTING AND RESULTS

0 1 0 0 0 -0

0 -1 -3 1 0 0

X 0 0 -5 1 0 X + 0 U

0 0 0 -3 .4 1

0 0 0 0 -1 1

Y = -1 0 0 0 0 X

Figure 9 shows the results.

Feedback matrix K from Feedback matrix K given

ICECAP on page 459 [34]

1.000000 1.00000
1.000000 1.00000

-2.441667 -2.44167
0.705208 0.70528
-0.055208 -0.05528

FIGURE 9 FEEDBACK MATRIX K

The results agree to at least 4 significant figures.

5. Summary

This chapter has discussed the ICECAP integrated part

testing. The procedure for testing each module and the

results of each test have been described. All the results

are satisfactory. Thus, it is confirmed that, the ICECAP

. integrated parts are working properly.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

1. Introduction

This chapter presents the conclusions reached during

this investigation. The chapter also makes recommendations

regarding the continuation of the efforts made in this

thesis as well as other functions that need to be

implemented.

2. Conclusions

The following conclusions were reached

2.1 MATLAB was integrated into ICECAP. The integration

of MATLAB into ICECAP is one of the most significant results

0- of this effort. Its matrix operations are now part of ICECAP

capabilities. Some of its routines were used to assist in

computations for other functions. Other features such as I/O

file operations can now be used to save, print, and recover

the elements of matrices. On-line help assistance on matrix

operations was also implemented properly. This on-line help

is more effective than assistance that must be obtained from

the manual.

2.2 The eigen number approach was coded and

implemented on ICECAP. Although this approach is slow as

compared to the Schur approach, it provides reliability and

numerical accuracy as good as the Schur vector approach can

(see Section 4 in Chapter 5). With all these capabilities,
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CONCLUSIONS AND RECOMMENDATIONS

ICECAP is now able to solve the Riccati equation and able to

perform optimal control (regulator) design.
-1

2.3 The routine to compute C(SI - A) B function was

developed and implemented. ICECAP is now able to provide the

transfer function for given A, B, C matrices. This function

is very important since it can also be used to compute a

closed-loop transfer function if a closed-loop matrix is

known.

2.4 Polynomial Operations were enhanced. Although this

function is currently available from TOTAL, its capability

is cumbersome. For example, the name of polynomial is

restrictively defined by the program. As opposed to TOTAL,

ICECAP can perform the polynomial operations with much

greater ease. For example, the user can define a polynomial

name and perform multiple polynomial operations such as

plus, minus, and multiplication sequencially without

laborious separate step.

2.5 The routine to perform a state feedback design was

developed and implemented. This routine was coded based on

phase variable representation. As a result, ICECAP is now

able to provide a state feedback matrix gain for a desired

closed-loop transfer function.

3. Recommendations

The following recommendations are made

3.1 Additional modern control functions should be

68



4

CONCLUSIONS AND RECOMMENDATIONS

implemented. Although this thesis effort developed and

implemented only the design by solving Riccati equation and

the design via phase variable representation, other modern

control functions yet to be implemented include

* other state feedback design using canonical variable

representation, observable variables representation,
and generalized control canonical form

* linear regulator, observers (reduced order and full

state feedback), and tracker using entire eigen
structure assignment

* those listed in Section 3.1.2 of Chapter 2

3.2 Develop a routine that generates a generalized

inverse. This routine can be used to compute the solution

to Riccati equation in the case of uninvertible matrices

[48].

3.3 Develop a routine that solves Riccati equation in

discrete case as well as equivalent discrete models and

sampled data form.

3.4 Modify ICER, the executive routine of ICECAP. As

mentioned in Section 2 of Chapter 4, ICER was not well

implemented. As the development continues, this routine

must be modified.

3.5 Incorporate SOFE [49] & SOFEPL (501 programs. SOFE

is used for generalized digital (Monte Carlo) simulation for

optimal filter evaluation while SOFEPL is used as a

postprocessor for SOFE that computes statistics and generates

plots. The implementation of these two programs
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on ICECAP will allow the user to perform stochastic

estimation and control design.

3.6 Incorporate LQGLIB [39]. LQGLIB includes various

computer routines that have applications in linear

multivariable system studies. Although the source code for

this program is not available because of copyright and

contractual stipulations, the object code can be used to

implement the program on ICECAP. When this is accomplished,

ICECAP can be used as a linear multivariable systems design

tool.

3.7 Improve computational efficiency of TOTAL's

routines. Complete rework of numerical precision,

numerical stability, and computational efficiency is

required for high dimension.

4. Summary

Several conclusions were reached as a result of this

thesis effort. This chapter has detailed these conclusions.

This chapter also presents several recommendations regarding

the continuation of ICECAP development. Recommendations on

what functional capabilities that should be implemented on

ICECAP are included.
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APPENDIX A

MATLAB's RAILROAD DIAGRAMS

1. Introduction

A formal description of the language acceptable to

MATLAB was first described in Reference [7]. For the

purpose of convenience, it is presented here again in a form

of railroad diagrams. These railroad diagrams are read by

following the arrow from entry to exit, one can construct a

syntactically correct statement. For example, to define a

name to a variable (matrix or polynomial or number),

according to Figure 15, a name must has first a letter, then

followed by more letters or digits. This process continues

as long as one desires. For additional information see

Reference [51] on page 31.

2. Railroad Diagrams

There are eleven non-terminal symbols in the language

LINE, STATEMENT, CLAUSE, EXPRESSION,TERM,
FACTOR, NUMBER, INTEGER, NAME, COMMAND, TEXT.

The diagrams define each of the non-terminal symbols using

the others and the terminal symbols

Letter -- A through Z,
Digit -- 0 through 9,
Char -- +); :+-*/\ .

Quote --

The railroad diagrams are presented as follows

o CLAUSE o FACTOR o NUMBER o TERM

o COMMAND o INTEGER o LINE o TEXT

o EXPRESSION o NAME o STATEMENT
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RAILROAD DIAGRAM

FOR >-mNAME >-- alp - EXPR >r

WHILE .1~XR~

ELSE >

END >

FIGURE 10 RAILROAD DIAGRAM FOR CLAUSE

NAME :-

-~'NAME >-

CHAR;-

FIGURE 11 RAILROAD DIAGRAM FOR COMMAND

FIGURE 12 RAILROAD DIAGRAM FOR EXPRESSION
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K RAILROAD DIAGRAM

: P NUMB ER >

NAME

K EXPR>

FACTOR >.... *>~.FACTOR >

>-~m TEXT >-

FIGURE 13 RAILROAD DIAGRAM FOR FACTOR

FIGURE 14 RAILROAD DIAGRAM FOR INTEGER
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RAILROAD DIAGRAM

K.LETTER<-

LETTER >

DIGIT

FIGURE 15 RAILROAD DIAGRAM FOR NAME

-- INT >-- . INT> - E >-INT,

FIGURE 16 RAILROAD DIAGRAM FOR NUMBER

;oSTATEMENT

CLAUSE

-- EXPR > -

COt.IMAND >

-4 >-j- EXPR <-- •-2 -

FIGURE 17 RAILROAD DIAGRAM FOR LINE
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RAILROAD DIAGRAM

NAME >'

EXPRFXP

<>ZNAME > >

FIGURE 18 RAILROAD DIAGRAM FOR STATEMENT

" FACTOR >--

FIGURE 19 RAILROAD DIAGRAM FOR TERM

LETTER >.

DIGIT >--

CHAR -

FIGURE 20 RAILROAD DIAGRAM FOR TEXT
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APPENDIX B

SUBROUTINE DESCRIPTIONS

1. Introduction

This appendix gives a purpose, subroutines called, and

a file name of each FORTRAN non-trivial subroutines used in

MATLAB, MRIC, TRFF,and MODERN. All subroutines used double

precision, single array for storing the elements of

matrices. Certain routines from EISPACK and LINPACK

software are well-documented in the source code; therefore,

their descriptions are not included in this appendix.

2. List of Subroutine Descriptions

CLAUSE FLOP MATFN6 PROMPT TRFF

CMULT FORMR MATLAB PUTID WPOLY

COMAND FORMZ MIXPOL QROOT XCHAR

CPOLY FUNS MODERN QSAVE

CROSS GETCH MPOLY RPOLY

CUT GETLIN MRIC SAVLOD

DESTOY GETSYM NEST SORT

DIAGON GETVAL NUM STACK1

EQID MATFN1 OPTIMAL STACK2

ERROR MATFN2 PARSE STACKG

EXPR MATFN3 PLOT STACKP

FACTOR MATFN4 PRINT TERM

FILES MATFN5 PRNTID TFORM
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SUBROUTINE DESCRIPTIONS

* Subroutine CLAUSE

Purpose CLAUSE serves as a recursive routine. It
handles FOR.. .NEXT, IF... THEN ... ELSE ... END,
and WHILE features.

Subroutines Called : GETSYM,ERROR,PUTID,WPOLY,STACKP,
EXPRPARSE

File Name CLAUSE.FOR

* Subroutine CMULT

Purpose : CMULT multiplies two complex numbers.

Subroutines Called : None

File Name : QCMULT.FOR

* Subroutine COMAND

Purpose Sets up the MATLAB's command table. It also
verifies whether the command is valid or not.
If the command is valid, COMAND will process
that command.

Subroutines Called ERROR,GETSYM,STACKP,FILES,PRNTID,
FUNS

File Name COMAND.FOR

* Subroutine CPOLY

Purpose Forms a polynomial of order n with n complex

eigenvalues.

Subroutines Called CMULT, WPOLY

File Name QCPOLY.FOR
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* Subroutine : CROSS

Purpose Adds the elements of matrix i.e.
1 2-

4= 1 6 15 14 9

7 81 9

This subroutine is used in polynomial
multiplication algorithm in Section 3.3 of
Chapter 4.

Subroutines Called None

File Name QCROSS.FOR

* Subroutine CUT

Purpose Partition a 2nx2n matrix as

U M
nxn nxn

z 
N

nxn nxn_

Subroutines Called STACKG

File Name QCUT.FOR

* Subroutine DESTOY

Purpose : Erases the variables in the storage.

Subroutines Called : STACKG,STACKP

File Name DESTROY.FOR

* Subroutine DIAGON

Purpose Forms a diagonal matrix (nxn) with a given
vector (nxl).

Subroutines Called : None

File Name QDIAGON.FOR
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SUBROUTINE DESCRIPTIONS

* Logical Function EQID

Purpose EQID is used to check whether two given

strings are the same or not.

Subroutines Called None

File Name LIB.FOR

* Subroutine ERROR

Purpose : Prints error messages.

Subroutines Called : None

File Name : ERROR.FOR

* Subroutine EXPR

Purpose EXPR processes MATLAB's expression according
to the railroad diagram for EXPR in Appendix A

0 Subroutines Called PUTID,GETSYM,ERROR,TERM,STACKI,
STACK2

File Name EXPR.FOR

* Subroutine : FACTOR

Purpose FACTOR processes MATLAB's factor according to
the railroad diagram for FACTOR in Appendix A.

Subroutines Called : ERROR,GETSYN,GETCH,EXPR,STACK1,
PUTID ,FUNS,STACKG,MATFN's,STACK2

File Name FACTOR.FOR

* Subroutine FILES

Purpose FILES ia a system dependent routine to

allocate files.

Subroutine Called : None

* . File Name FILES.FOR
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SUBROUTINE DESCRIPTIONS

* Double Precision Function : FLOP

Purpose : FLOP is a system dependent double precision
function. It counts and possibly chops each
floating point operation.

Subroutine Called : None

File Name : FLOP.FOR

* Subroutine : FORMR

Purpose : Forms the matrix I based on A,Q,and D.
-1 T

where D = BR B

S -A D

* T
-Q A

Subroutines Called : STACK1

File Name : FORMR.FOR

Subroutine : FORMZ

Purpose : FORMZ is a machine dependent routine which
prints outputs with a Z format
(see VAX/FORTRAN manual for Z format).

Subroutines Called : None

File Name : FORMNZ.FOR

Subroutine : FUNS

Purpose : F[ilS sets up the MATLAB's functional table
It also verifies whether the function is
valid or not. If the function is valid,
FUNS set the two control variables namely,
FIN and FUN which will be used to signal
MATLAB subroutine to call functional
routines, MATFNI thru MATFN6.

Subroutine Called : PRNTID

*File Name : FUNS.FOR
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* :SUBROUTINE DESCRIPTIONS

* Subroutine : GETCH

Purpose GETCH gets next character from the buffer.

Subroutines Called : None

File Name : GETCH.FOR

* Subroutine : GETLIN

Purpose GETLIN reads in the input and puts it in the

buffer 80 characters at a time.

Subroutines Called : XCHAR,GETCH,PUTID,FILES, EDIT

File Name GETLIN.FOR

* Subroutine : GETSYM

Purpose : GETSYM primarily verifies each character in
the buffer which contains 80 characters.

' This buffer was read previously in by
subroutine GETLIN.

Subroutines Called : GETCH,GETVALPRNTID

File Name : GETSYM.FOR

* Subroutine : GETVAL

Purpose : GETVAL forms a numerical value of each

character in the buffer.

Subroutines Called GETCH

File Name GETVAL.FOR

* Subroutine MATFN1

Purpose MATFN1 evaluates functions involved in
Gaussian elimination.

Subroutines Called : ERROR,WGECO,WGESL,RSET,WCOPY,WGEDI,
WGEFA, WSWAP, HILBER, WSCAL

File Name : MATFNI.FOR
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SUBROUTINE DESCRIPTIONS

• Subroutine : MATFN2

Purpose MATFN2 evaluates elementary functions and
functions involved in eigenvalues and
eigenvectors.

Subroutines Called : ERROR,WCOPY,WSET ,HTRIDI,IMTQL2,
HTRINK, CORTH, COMQR3 ,WLOQ ,WMUL, WATAN,
WSQRT, WSCAL, WAXPY, WDIV

File Name MATFN2.FOR

* Subroutine : MATFN3
Purpose MATFN3 evaluates functions involved in singular

value decomposition.

Subroutines Called : ERROR,WSVDC ,WCOPY,WRSCAL

File Name • MATFN3.FOR

* Subroutine : MATFN4

Purpose : MATFN4 evaluates functions involved in QR
decomposition in least squares sense. I

Subroutine Called : ERROR,STACK1 ,WCOPYWSET,WQRDC,WQRSL,

WSWAP

File Name : MATFN4.FOR

* Subroutine : MATFN5

Purpose : MATFN5 performs file handling and other I/O -

operations.

Subroutines Called ERROR,FILES,PRINT,PUTID,SAVLOD,
STACKPRSET,RAT,BASE,WCOPY,STACK1,
PLOT

File Name : MATFN5.FOR
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SUBROUTINE DESCRIPTIONS

* Subroutine : MATFN6

Purpose : MATFN6 evaluates utility functions such as
MAGIC,KRONECKER PRODUCT,SIZE,EYE,RAND, etc.

Subroutines Called : ERROR,WCOPY,WMUL,WDIV,USER,RSET,
MAGIC,WSET

File Name : MATFN6.FOR

* Subroutine : MATLAB

Purpose : MATLAB is used to initialize all necessary
control variables and flags.

Subroutines Called FILES,WSET,PUTID,PARSE,MATFN1 thru
MATFN6.

File Name : MATLAB.FOR

* Subroutine : MIXPOL

Purpose : Forms a polynomial of order n with given real
and complex eigenvalues.

Subroutines Called : WPOLY,CPOLY,RPOLY,QROOT .

File Name MIXPOL.FOR

* Subroutine : MODERN

Purpose Performs a state variable feedback design
using phase variable representation using
the algorithm presented in Section 3.4 of
Chapter 4.

Subroutines Called TFORM,STACKG,QSAVE,NUM-

File Name MODERN.FOR

* Subroutine MPOLY

Purpose Performs polynomial multiplication using the
algorithm presented in Section 3.3 of Chapter 4.

Subroutines Called : WPOLY

" File Name MPOLY.FOR
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* Subroutine : MRIC

Purpose : MRIC solves the continuous time algebraic
matrix Riccati equation

T -1 T

A P + PA- PBR BP+Q - 0

using the eigen number approach.

Subroutine Called : FORMR,SORT,RPOLY,CPOLY,MIXPOL,NEST,
CUT,ANSWER1 ,ANSWER2,QSAVE,DESTOY,
MATFN2

File Name : RICCATI.FOR

* Subroutine: NEST

Purpose : Multiplies a matrix polynomial using a nest

multiply algorithm (47].

Subroutines Called : STACK2,STACKG

File Name : QNEST.FOR

* Subroutine : NUM

Purpose : Computes coefficients of a numerator of a
transfer function using the algorithm
presented in Section 3.2 of Chapter 4.

Subroutine Called : MATMUL,MATVEC,VECPRO

File Name : NUM.FOR

*Subroutine :OPTIMAL

Purpose : Computes a feedback matrix gain K using a
positive definite solution to Riccati equation
and a closed loop matrix.

Subroutines Called : STACK2,STACKP,STACKG

File Name : OPTIMAL.FOR
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Subroutine : PARSE
Db

Purpose PARSE controls the interpretation of each
statement. It calls subroutines that process
the various syntactic quantities such as
command, expression, term, and factor.

Subroutines Called FILES,PROMPT,GETLIN,PUTID,GETSYM,
COMANDFUNS ,ERRORSTACKPCLAUSE,
EXPRTERM,FACTOR

File Name PARSE.FOR

* Subroutine : PLOT

Purpose PLOT is used to plot X versus Y on specified

unit number.

Subroutines Called None

File Name : PLOT.FOR

* Subroutine • PRINT

Purpose : PRINT serves as a primary output routine.

Subroutines Called : FILES,PRNTID

File Name PRINT.FOR

* Subroutine : PRNTID

Purpose : PRNTID prints the variable names.

Subroutines Called : None

File Name • PRNTID.FOR

* Subroutine : PROMPT

Purpose PROMPT is used to issue MATLAB prompt with

optional pause.

Subroutines Called : None

" File Name : PROMPT.FOR
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* Subroutine : PUTID

Purpose : PUTID is used to store the variable name onto

the storage.

Subroutines Called : None

File Name : LIB.FOR

Subroutine : QROOT
Purpose: QROOT selects n positive real parts of

eigenvalues.

Subroutines Called : None

File Name : QROOT.FOR

• Subroutine : QSAVE

Purpose : Saves an output with a given name.

Subroutines Called : GETLIN,GETSYM,STACKP

File Name : QSAVE.FOR

* Subroutine : RPOLY
Purpose : RPOLY forms a polynomial of order n with n

real eigenvalues.

Subroutines Called : DIAGONMATFN2

File Name : QRPOLY.FOR

* Subroutine : SAVLOD

Purpose SAVLOD is used for save and load data to and
from the user disk.

Subroutines Called : None

File Name : SAVLOD.FOR
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• Subroutine : SORT

Purpose : SORT rearranges the eigenvalues. It puts the
largest eigenvalue in the top of the stack
and the smallest in the bottom.

Subroutines Called: None

File Name : SORT.FOR

* Subroutine : STACKI

Purpose : STACK1 performs unary operations and a
transpose of a matrix since these operations
are very simple. For a serious matrix
computation, the LINPACK & EISPACK is used.

Subroutines Called : WRSCAL,ERROR,WCOPY

File Name : STACK1.FOR

* Subroutine : STACK2

Purpose STACK2 performs binary and ternary operations
such as addition, subtraction, multiplication,
etc.

Subroutines Called: ERROR,WAXPY,WCOPY,WSCAL,WDIV,WMUL

File Name : STACK2.FOR

* Subroutine : STACKG

Purpose STACKG is used to load data from the bottom
of the stack to the top of the stack. This
data will then be used in the actual
computations.

Subroutines Called PUTIDERROR,WCOPY

File Name : STACKG.FOR

92

*<. :- .



SUBROUTINE DESCRIPTIONS

* Subroutine : STACKP

Purpose : STACKP is used to put variables into stacks.

Subroutes Called : ERROR,FUNS,PUTID,WCOPY,WSET,PRINT

File Name : STACKP.FOR

* Subroutine : TERM

Purpose TERM processes MATLAB's term according to the
railroad diagram for TERM in Appendix A.

Subroutines Called : FACTOR,GETSYM, STACK2,ERROR,MATFN's

File Name : TERM.FOR

* Subroutine : TFORM

Purpose Computes a transformation matrix which
transforms a state equation from a physical
variable form to a phase variable form.

Subroutines Called : STACKG,STACK2

File Name : TRANSFORM.FOR

* Subroutine: TRFF

Purpose : Performs a C(SI - A) B function.

Subroutines Called : STACKGERROR,MATFN2,NUM,VCOPY,
MCOPYCOPYIER

File Name : TRANSFER.FOR

* Subroutine : WPOLY

Purpose : WPOLY multiplies a column vector of order (nxl)
and a row vector (lxn) together.

Subroutines Called : CROSS

File Name : WPOLY.FOR
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* Subroutine: XCHAR

Purpose : XCHAR is a system dependent routine to handle

special characters.

Subroutines Called : None

File Name • XCHAR.FOR
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APPENDIX C

ICECAP USER's MAN~UAL

1. Introduction 7

This appendix first presents the overview of ICECAP.

Second, it provides all ICECAP features. Finally, it

includes examples of the use of ICECAP to solve modern

control problems. They were selected from example problems

or problems contained in the Reference [34).

2. Overview of ICECAP

ICECAP (Interactive Control Engineer Computer Analysis

Package) [4,5) is a computer-aided design program that

provides the control systems engineer with a "designer's

workbench". Based on its current version, ICECAP can be

used as a design tool such as conventional control design

(discrete & continuous), modern and optimal control design.

It is designee2 to be a system that is easy to use and learn;

that is, it accepts single line command words from the user,

processes them immediately, and displays the results.

ICECAP is based on the program "TOTAL" [2) and "MATLAB" [7).

TOTAL is an interactive software package for digital and

continuous control system analysis and synthesis (developed

at The Air Force Institute of Technology). MATLAB was

originally developed by C. Moler at the University of New

Mexico. It was written as a convenient tool for

computations involving matrices. MATLAB provides access to

the LINPACK [351 and EISPACK [361 software; these two
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packages represent the state of the art in matrix

computational methods. EISPACK contains routines for matrix

eigenvalue computations while LINPACK provides subroutines

for solving and analyzing simultaneous linear equations.

The MATLAB program has been enhanced with control design

functions to form a complete interactive computer-aided

control system design package.

General numerical analysis primitives perform the

solution of simultaneous linear equations, matrix inversion,

eigensystem analysis, singular value decomposition, and

other matrix decompositions. Other specialized primitives

are provided for conventional and modern control design.

These include root locus design, state feedback design, and

optimal control design (via the algebraic Riccati equation).

Both continuous and discrete systems are supported.

ICECAP is much more than just a control design program.

It provides on-line help assistance and quick answers to

common problems, making it enjoyable to use.

3. MATRIX ANALYSIS

At the heart of ICECAP is the ability to manipulate

matrices. It has commands and syntax that allow easy and

powerful manipulation of matrices. Five stacks are used to

store all variables and data. Matrices are contained in the

local MATLAB "workspace". To see what objects are in the

workspace, the command DIR is used. -
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Matrices can be introduced into ICECAP in several

different ways. The easiest for small matrices is to use an

explicit list. The explicit list is surrounded by '<' and

and uses the semicolon ';' to indicate the ends of the

rows. For example, the input line

A =<1 2 3;4 5 6;7 8 9"

results in the output

A -

1. 2. 3.
4. 5. 6.
7. 8. 9.

which is be saved for later use. The individual elements

are separated by commas or blanks and can be any MATLAB

expressions. For example,

X = <-9.4, 1/3, 4*atan(1)>

results in

X =

-9.4000 0.3333 3.1416

The command such as LONG R, X' provides results in

X -

-9.400000000000000
0.333333333333333
3.141592653589793

and the command SHORT restores the original format.

Large matrices can be spread across several input

lines, with the RETURN replacing the semicolons. The

above matrix could also have been produced by
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A 12 3
789 ""

Matrices are overwritten, if they are assigned new

values. For example,

A = <1 2;3 1>

results in

A =

1. 2.
3. 4.

which replaces the previous A matrix.

All computations are done using double precision real

arithemetic. The user, however, has a choice to see the

results in REAL, E, D, or Z format. ICECAP has a rich

instruction set for general matrix analysis. Most of these

matrix primitives originated with MATLAB.

3.1 MATRIX ARITHMETIC

ICECAP provides a set of operations that perform basic

matrix arithmetic

/ - matrix right division computed by Gaussian elimination

- matrix left division computed by Gaussian elimination

- matrix transpose, quote to delimit character strings

+ - matrix addition

- - matrix subtraction

* - matrix or polynomial multiplication

•** - raises matrices or polynomials to powers
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For example, suppose for a vector X and a matrix A,

(Note that " >'is the system prompt)

[>: X -<-1.3 4/5 pi>; 'v

D A -<1 2 3;4 5 6;7 8 V?>;

a vector B is computed as A*X,

B -.A*X

which results in

B

9.7248
17.6496
28.7159

then the statement

1>:Y = AB

'(*7 solves the linear equations and results in

-1.3000
0.8000
3.1416

The inverse of a matrix may also be formed directly

using the function INV. If A had been non-square, then the

under- or over- determined equation would have been solved

in a least squares sense.

3.2 ELEMENT-BY-ELEMENT OPERATIONS

ICECAP has a set of elementary functions that operate

on matrices. The following functions perform element-by-

Selement operations. Given that A ia a matrix and x is a

number,
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ABS(x) - absolute value or magnitude

CONJ(x) - complex conjugate

IMAG(x) - imaginary part

PROD(A) - product of all elements

REAL(A) - real part

ROUND(A) - round to nearest integer

SIZE(A) - row and column dimensions of a matrix

SUM(A) - sum of all elements of a matrix

3.3 BASIC PROPERTIES

Some basic properties of a matrix may be calculated

with the following functions (given that A is a matrix)

COND(A) - condition number in 2-norm

DET(A) - determinant

INV(A) inverse

HILB(A) - inverse HILBERT matrices

KRON(A) - Kronecker tensor product of two given
matrices

NORM(A) - singular values, 1-norm, infinity norm, and
F-norm; i.e., SQRT(SUM(DIAG(A'*A)))

PINV(A) - pseudoinverse with optional tolerance

RANK(A) - rank of a matrix

RAT(A) - remove roundoff error

RCOND(A) - estimate of the condition of a matrix

TRIL(A) - lower triangular part of a matrix

TRIU(A) - upper triangular part of a matrix
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3.4 TRANCENDENTAL MATRIX FUNCTIONS

A set functions calculate the trancendental matrices

that are defined for square matrices. (given that A is a

matrix.)

ATAN(A) - arctangent

COS(A) - cosine

EXP(A) - matrix exponential

LOG(A) - natural logarithm

SIN(A) - sine

SQRT(A) - square root

These functions are calculated using eigenvalues and

eigenvectors. When A is a vector, however, these functions

are calculated on an element by element basis. If A is
I.

neither a vector, nor square, these functions give an error

message.

3.5 DECOMPOSITIONS AND FACTORIZATIONS

Some matrix decompositions and factorizations may be

calculated with the following commands (given that A is a

matrix)

CHOL(A) - Cholesky factorrization

EIG(A) - eigenvalues and eigenvectors

HESS(A) - Hessenberg form

LU(A) - factors from Gaussian elimination

ORTH(A) - orthogonalization

QR(A) - orthogonal-triangular decomposition
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SHUR(A) - Schur decomposition

RREF(A) - reduced row echelon form of a rectangular
matrix

SVD(A) - singular value decomposition

3.6 OTHER FUNCTIONS

ICECAP also provides some useful functions that help

the user to generate often used matrices. _

EYE - identity matrix

ONES - matrix of all ones

MAGIC - interesting test matrices. MAGIC(N) is an N
by N matrix constructed from the integers 1
through N**2 with equal row and column sums.

3.7 POLYNOMIAL OPERATIONS

ICECAP provides several primitives for polynomial

manipulations

& & ** - multiplication and raise powers of

polynomial

POLY - characteristic polynomial

ROOT - polynomial root

Polynomials are represented in ICECAP as row vectos

containing the coefficients ordered by descending powers.

For example, the characteristic equation of the matrix

A-

1. 2. 3.
4. 5. 6.
9. 10. 11.

is found by using POLY and typing

P [ POLY(A)
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P -

1. 0000
-17.0000
-24.0000
0.0000

The roots of this equation (eigenvalues of matrix A) are

found using ROOT.

[> R - ROOT(P)

R "

18.3107
-1.3107
0.0000

These may be reassembled into a polynomial using POLY.

PP = POLY(R)

1.0000
-17.0000
-24.0000
0.0000

Polynomial multiplication may be accomplished using

"*". If A and B are polynomials, then Y = A*B calculates

the polynomial product. For example, typing

[> :A = <1 2 1>;

[> B = <1 2;

[> : Y = A*B

which yields the polynomial product

Y -

1. 4. 5. 2.

Raising the power of polynomial can be done easily by
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typing

(>:A <1 >;

X - A**3

yields the polynomial product

X

1. 3. 3. 1.

3.8 I/O FILES HANDLING

ICECAP provides a very useful file handling for saving

and loading data.

DISP(T) - print the text stored in T

SAVE('files') - stores all the current variables in a
file

LOAD('files') - retrieves all the variables from a file

PRINT('FILE',X) - print X on a file

DIARY('file') - makes a copy of the complete ICECAP
session

4. CONTROL DESIGN AND ANALYSIS

ICECAP provides a powerful environment for the analysis

and design of control systems. Many analysis and design

tasks are easily performed using a single application of a

primitive function. A rich instruction set of primitive

functions is available. Other design and analysis tasks can

be solved by a short series of commands. The commands are

interactively typed in by the user.

ICECAP is primarily concerned with linear systems that

can be represented either in state-space form or in
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polynomial notation as a Laplace transfer function for

. continuous time, or as a Z-transform transfer function for

discrete time.

4.1 MODERN CONTROL

A system of LTI differential equations can always be

expressed as a set of first-order matrix differential

equations

x -Ax + Bu

y - Cx + Du

where u is the control input vector, x is a vector of state

variables, and y is the output vector.

An equivalent representation for a single input-single

output system is the Laplace transform representation

Y(S) -1
- = C (SI- A) B + D
U(S)

A system can be converted from state-space to Laplace

transfer function by typing DISPLY TRANSFER/F and from

there on the user can use ICECAP commands like DISPLAY,

SPECS, LOCUS, EQUATION, etc. as desired.

ICECAP also provides other modern control design

techniques, such as state feedback design, and optimal

control design via the algebraic Riccati equation. Using a

command like DISPLAY MODERN or DISPLAY RICCATI, the user can

obtain the feedback matrix, and the solution to Riccati

equation and feedback matrix associated with that positive 7
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definite solution, respectively. Especially in the RICCATI

solver, if the solution is positive definite, ICECAP also

provides a closed loop matrix automatically. From this

point on, the user can use the closed loop matrix to obtain

a closed loop transfer function by typing DISPLAY TRANSFER/F.

4.2 CLASSICAL DESIGN (Continuous and Discrete System)

Since ICECAP builds upon the powerful routines of

TOTAL, it retains the TOTAL's power as a classical design

tool. Here are some useful ICECAP commands which can be

used to perform control system design and analysis.

- HELP On line help is provided. Type HELP followed
by...

-- CHANGE (modifies the numerator or
denominator constant, TSAMP
and planes of analysis)

-- COPY (copies source to destination)

-- DEFINE (inputs Matrices and Transfer
function)

-- DELETE (Removes a pole or zero of a
transfer function)

-- DISPLAY (executes various functions)

-- FORM (forms OLTF CLTF using GTF&HTF)

-- INITIAL (explains abbreviations of
commands)

-- INSERT (adds a pole or zero to a
transfer function)

-- MATRIX (explains matrix functions)

-- PRINT (prints data to answer file)
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-- SYSTEM (explains genearl information
about ICECAP)

-- TEACH (example of continuous time
problems)

-- TFORM (for discrete transformation)

-- TURN (turn switches on or off)

- PRINT Print data to file(s). Type PRINT followed
by...

-- EQUATION (invert Laplace transform)

-- GAIN (forward loop gain)

- LISTING/F (listing of frequency responses)

-- LISTING/T (listing of time responses)

-- LOCUS AUTOSCALE (root locus with autoscale)

-- LOCUS MAGNIFY (magnifies root locus)

-- LOCUS SHRINK (reduces root locus)

-- LOCUS ZOOM (magnifies root locus at a
particular point)

-- LOCUS/BRANCH (branch for each locus)

LOCUS/GAIN (locus with various gains)

-- LOCUS/ZETA (locus with various zetas)

-- PFE (partial fraction expansion)

-- SCAN/MAG (scanning magnitude)

-- SCAN/PHASE (scanning phase)

-- SPECS (figure of merit)

- RECOVER (load data from files)

-TURN

-- ANSWER (ON/OFF) (write data to file ANSWER)
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-- DECIBELS (ON/OFF) (decibels mode)

-- GRID (ON/OFF) (grid on or off)

-- HERTZ (ON/OFF) (Hertz mode)

-- MAINMENU (ON/OFF) (mainmenu level)

- UPDATE save data to file MEMORY

- COPY source to destination (i.e. GTF to HTF etc.)

- DEFINE primary used for input data; various options
are...

-- MATRIX (enables matrix command)

-- GAIN (modifies forward loop gain)

-- CLTF POLY (input CLTF in poly form)

-- OLTF FACT (input OLTF in factored form)

t - DISPLAY primary output at user terminal, various
options are...

-- EQUATION (time response of CLTF)

-- GAIN (forward loop gain)

-- LISTING/F (listing of frequency
responses)

-- LISTING/T (listing of time responses)

-- LOCUS AUTOSCALE (root locus with autoscale)

-- LOCUS MAGNIFY (magnifies root locus)

-- LOCUS SHRINK (reduces root locus)

-- LOCUS ZOOM (magnifies root locus at a
particular point)

-- LOCUS/BRANCH (branch for each locus)

-- LOCUS/GAIN (locus with various gain)

-- LOCUS/ZETA (locus with various zeta)
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-- MATRIX (same as DEFINE MATRIX)

-- MODERN (performs state variable
feedback design)

-- OLTF, CLTF, HTF or GTF

-- PFE (partial fraction expansion)

-- RESPONSE/F (plots frequency response
of transfer function)

-- RESPONSE/T (plots time response of a . -

transfer function)

-- RICCATI (solve the continuous time ARE)

-- SCAN/MAG (scanning magnitude)

-- SCAN/PHASE (scanning phase)

-- SPECS (figures of merit)

* -- SWITCHES (shows switch settings) -

-- TRANSFER/F (performs C(SI - A) B function)

- FORM primary used for block diagram manipulation

-- CLTF using GTF and HTF

-- CLTF using OLTF

5. Command Language Definition

This section presents the ICECAP command language.-

definitions in flow chart form. These definitions

unambiguously define the ICECAP command language.

Definitions are provided in alphabetical order. The

standards used to develop the command language diagrams are

also provided. Finally, an exhausted listing of every legal

ICECAP command is presented along with the allowable
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abbreviation in each case.

5.1 List of Command Language Definitions

A list of the described command language definitions

appears below:

o CHANGE o DISPLAY o PRINT
o COPY o FORM o TURN
o DEFINE o HELP o TFORM
o DELETE o INSERT

5.2 Command Language Definition Standards

* All diagrams are to be read from left to right.

* Bracketed terms indicate choices. Only one
choice per bracket is allowed.

* A lower case command word indicates that the
feature has not yet been implemented in the language.

* The full spelling of each command word is used in
each case. It is understood that the
abbreviations described in section 5.3 are also
valid.

* Also, the carriage return and the dollar sign are
valid choices at any point in the diagram. The
carriage return causes the system to prompt the
user regarding the choices for the next allowable
word. A dollar sign aborts the present commmand
string.

* In addition at least one blank must separate the -

words in the command string.

* The blanks in some of the brackets are there only
to give the diagram balance.

* Words that need no object in order to be complete

commands are not shown. To date, this includes
the commands STOP, UPDATE, and RECOVER.
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The following figures describe the sequence of

command words that form an ICECAP command.

CLDK
CLNK
GDK
GNK
HDK

CHANGE"
HNK
OLDK
OLNK
PLANE
TSAMP

FIGURE 21. COMMAND LANGUAGE DEFINITION FOR CHANGE

CLTF CLTF

CoyIGTF GTFCOPY

HTF HTF
OLTF OLTF

Figure 22. COMMAND LANGUAGE DEFINITION FOR COPY
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GAIN
DEFINE h'- 

MATRIX

CLTF '
GTF FACT

DEFINE
HTF POLY
OLTF _ -

FIGURE 23. COMMAND LANGUAGE DEFINITION FOR DEFINE

1.h .

CLTF -'-

GTF ZERO
DELETE

HTF POLE
OLTF

FIGURE 24. COMMAND LANGUAGE DEFINITION FOR DELETE
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CLTF
EQUATION
GAIN
GTF
HTF
LISTING/F
LISTING/T
LOCUS / BRANCH
LOCUS/GAIN
LOCUS / ZETA
MATRIX

DISPLAY

MODERN
OLTF
PFE
RESPONSE/F
RESPONSE /T
RICCATI
SCAN/MAG
SCAN/PHASE
SPECS
SWITCHES
TRANSFER/F

AUTOSCALE
- -- - MAGNIFY

DISPLAY LOCUS
SHRINK
ZOOM

CLTF
- - OLTF

DISPLAY ROOT
IL _ POLY GTF

HTF

FIGURE 25. COMMAND LANGUAGE DEFINITION FOR DISPLAY
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OLTF

FORM CLTF USING GTF AND HTF

CLTF USING OLTF

FIGURE 26. COMMAND LANGUAGE DEFINITION FOR FORM

CHANGE
COPY
DEFINE
DELETE
DISPLAY
FORM

HELP INITIAL
INSERT
MATRIX
PRINT
SYSTEM
TEACH
TFORM
TURN

FIGURE 27. COMMAND LANGUAGE DEFINITION FOR HELP

-" .- ,

CLTF
GTF ZERO

INSERT .

HTF POLE
OLTF

FIGURE 28. COMMAND LANGUAGE DEFINITION FOR INSERT
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CLTF
EQUATION
GAIN
GTF
HTF
LISTING/F
LISTING/T
LOCUS /BRANCH

PRINT LOCUS/GAIN
LOCUS /ZETA
OLTF
PFE
RESPONSE/F - -

RESPONSE/T
SCAN/MAG
SCAN/PHASE
SPECS

-AUTOSCALE"

MAGNIFY
PRINT LOCUS

SHRINK "
ZOOM

CLTF
OLTF

PRINT ROOT
POLY GTF

HTF

FIGURE 29. COMMAND LANGUAGE DEFINITION FOR PRINT
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SWj
SWP

CLTF SZ BAKDIF
GTF WPS BILINEAR

TFORM WPZ IMPULSE
HTF WS TUJSTIN
OLTF WZ MULTIPLE

ZW
ZWP

FIGURE 30. COMMAND LANGUAGE DEFINITION FOR TFORM

ANSWER
CANCEL
CLOSED"4

TURN DECIBELS ON

GRID OFF
HERTZ
MAT NMENU

FIGURE 31. COMMAND LANGUAGE DEFINITION FOR TURN
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5.3 ICECAP Command

The following list contains every valid ICECAP

command defined as of the conclusion of this investigation.

The accepted abbrevaition is listed along side the command.

COMMAND ABBREVIATION

CHANGE (numerator or denominator gain)
CHANGE CLNK CHA CLN

CHANGE PLANE CHA PLA

CHANGE TSAMP CHA TSA

COPY (source) (destinstion)
COPY CLTF OLTF COP CLT OLT
COPY GTF HTF COP GTF HTF

I DEFINE GAIN DEF GAI
DEFINE INPUT DEF INP

DEFINE (function) (fact/poly)
DEFINE CLTF POLY DEF CLT POL
DEFINE OLTF FACT DEF OLT FAC

DEFINE MATRIX DEF MAT

DELETE (function) (POLE or ZERO)
DELETE HTF ZERO DEL HTF ZER

DISPLAY (function)
DISPLAY OLTF DIS OLT
DISPLAY EQUATION DIS EQU
DISPLAY GAIN DIA GAI
DISPLAY LISTING/F DIS L/F
DISPLAY LISTING/T DIS L/T
DISPLAY LOCUS AUTOSCALE DIS LOC AUT
DISPLAY LOCUS MAGNIFY DIS LOC MAG
DISPLAY LOCUS SHRINK DIS LOC SHR
DISPLAY LOCUS ZOOM DIS LOC ZOO
DISPLAY LOCUS/BRANCH DIS L/B
DISPLAY LOCUS/GAIN DIS L/G
DISPLAY LOCUS/ZETA DIS L/Z
DISPLAY MATRIX DIS MAT
DISPLAY MODERN DIS MOD
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COMMAND ABBREVIATION

DISPLAY PFE DIS PFE

DISPLAY POLY (function)
DISPLAY POLY GTF DIS POLY GTF

DISPLAY RESPONSE/F DIS R/F
DISPLAY RESPONSE/T DIS R/T

DISPLAY ROOT (function)
DISPLAY ROOT CLTF DIS ROO CLT

DISPLAY SCAN/MAG DIS S/M
DISPLAY SCAN/PHASE DIS S/P
DISPLAY SPECS DIS SPE
DISPLAY SWITCHES DIS SWI
DISPLAY TRANSFER/F DIS T/F

FORM OLTF FOR OLT
FORM CLTF USING GTF AND HTF FOR CLT USI GTF AND HTF
FORM CLTF USING OLTF FOR CLT USI OLT

HELP CHANGE HEL CHA
HELP COPY HEL COP
HELP DEFINE HEL DEF
HELP DELETE HEL DEL
HELP DISPLAY HEL DIS
HELP FORM HEL FOR
HELP INITIAL HEL INI
HELP INSERT HEL INS -

HELP MATRIX HEL MAT
HELP PRINT HEL PRI
HELP SYSTEM HEL SYSTEM
HELP TEACH HEL TEA
HELP TFORM HEL TO
HELP TURN HEL TUR
INSERT (function) (POLE or ZERO)
INSERT HTF ZERO INS HTF ZER

PRINT EQUATION PRI EQU
PRINT GAIN PRI GAI
PRINT LISTING/F PRI L/F
PRINT LISTING/T PRI L/T
PRINT LOCUS AUTOSCALE PRI LOC AUT
PRINT LOCUS MAGNIFY PRI LOC MAG
PRINT LOCUS SHRINK PRI LOC SHR
PRINT LOCUS ZOOM PRI LOC ZOO -

PRINT LOCUS/BRANCH PRI L/B

118



p-.

ICECAP USER's MANUAL

COMMAND ABBREVIATION

PRINT LOCUS/GAIN PRI L/G
PRINT LOCUS/ZETA PRI L/Z
PRINT PFE PRI PFE

DISPLAY POLY (function)
DISPLAY POLY GTF DIS POLY GTF

PRINT RESPONSE/F PRI R/F
PRINT RESPONSE/T PRI R/T

PRINT ROOT (function)
PRINT ROOT CLTF DIS ROO CLT

PRINT SCAN/MAG PRI S/M
PRINT SCAN/PHASE PRI S/P
PRINT SPECS PRI SPE

RECOVER REC
STOP STO

TFORM (function) ("from"plane"to"plane) (method)
TFORM CLTF SZ TUSTIN TFO CLT SZ TUS

TU.N ANSWER (ON/OFF) TUR ANS (ON/OFF)
TURN CANCEL (ON/OFF) TUR CAN (ON/OFF)
TURIN CLOSED (ON/OFF) TUR CLO (ON/OFF)
TLTN DECIBELS (ON/OFF) TUR DEC (ON/OFF)
TURN GRID (ON/OFF) TUR GRI (ON/OFF)
TLRN HERTZ (ON/OFF) TUR HER (ON/OFF)
TURN MAINMENU (ON/OFF) TUR MAI (ON/OFF)

UPDATE UPD
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5.4 Discrete commands -- The discrete command consist of

four words. The first word is TFORM. This informs the

computer that a transformation is desired. The second word

is the name of the transfer function. Presently, ICECAP has

four transfer functions, CLTF , OLTF, GTF, and HTF. The

third word is used to inform the computer the "existing"

domain and the "desination" domain e.g. SZ where S is the

"existing" domain and Z is the "destination" domain. The

last word of the command string is the method. There are

four methods of transformations i.e. Impulse, Tustin,

Backward Difference, and Bilinear. The following are some

typical discrete commands for ICECAP.

TFORM CLTF SZ IMPULSE Which is read: transform CLTF

from the S-domain to the Z-domain via the Impulse method. -"

The inverse of the above is TFORM CLTF ZS IMPULSE.

Also, if one desires to perform a transformation from

the S-domain to the W'-domain, one may use the word MULTIPLE

as the fourth word of the command string. This will save

time. For example, to transform a function from the S-

domain to the W-domain requires two transformation. First

from the S-domain to the Z-domain and the from the Z-domain

to the W-domain. One way to do this is as follows:

TFORM GTF SZ IMPULSE then TFORM GTF ZW BILINEAR

Using MULTIPLE as the fourth word will do the same in one

command i.e.
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TFORM GTF SW MULTIPLE.

The following is a list of a few items to remember

when performing a discrete analysis:

1. If the transfer function is in a domain other than the

S-domain which is the default domain, then the sample time

must be entered prior to performing the analysis. For

example, if one wants to look at the discrete time response,

enter CHANGE TSAMP. If, one wants the transfer function to

be displayed with the correct parameters enter

CHANGE PLANE and ICECAP will prompt with a menu of desired

planes.

2. Use the Impulse method to transform a transfer function

with a ZOH or Padea approximation of a ZOH. If the transfer

function contains a pole at the origin, then the ZOH will

not work because the present algorithms do not allow

repeated roots. An alternate way to solve this problem is

to set the pole of the transfer function near zero i.e.

.000001.
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6. Example Problems.

Example 1. This example illustrates the use of function

gC(SI - A) B using example presented in Section 4-16 page

138 [34].

Problem Determine the transfer functions and draw a block

diagram for the two-input two-output system represented by

~0 1 0 -
X _-U; Y= 0 -2 X
-2- 0 -21 01

ICECAP> DEFINE MATRIX

D [: A -<0 1;-2 -3>,Bl =<1 0>;Bl -Bl',B2 =<1 -2>;B2 =B2'

A4 A 0. 1.

-2. -3.

0.

B2-

-2.

>:Cl <0( -2>,C2 =<1 0>

Cl

0. -2.

C2=

1. 0.

ICECAP> DISPLAY TRANSFER/F
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0

ENTER YOUR AB,C,D MATRICES A,B1,C1,D

OPEN-LOOP TRANSFER FUNCTION (OLTF)

OLK =GAIN*(OLNK/OLDK) =4.000

GAIN= 1.000

OLTF(S) NUMERATOR
I OLNPOLY(I) OLZERO(I)
1 (1.000 )OLNK= 4.000

OLTF (5) DENOMINATOR
I OLDPOLY(I) OLPOLE (I)
1 (1.000 )S** 2 (-2.000 )+ J( 0.OOOOE+0O)
2 (3.000 )S** 1 (-1.000 )+ J( O.OOOE+OO)
3 (2.000 )OLDK= 1.000

ENTER YOUR A,B,C,D MATRICES A,BL,C2,D

OPEN-LOOP TRANSFER FUNCTION (OLTF)

OLK =GAIN*(OLNK/OLDK) =1.000

GAIN= 1.000

OLTF(S) NUMERATOR
I OLNPOLY(I) OLZERO(I)

*1 C1.000 )S** 1 C-3.000 )+ J( O.OOOOE+00)
*2 (3.000 )OLNK= 1.000 -

POLTF(S) DENOMINATOR
I OLDPOLY(I) OLPOLE(I)
1 C1.000 )S** 2 C-2.000 )+ J( 0.OOOOE+00)
2 (3.000 )S** 1 C-1.000 )+ J( 0.OOOOE+00)
3 C2.000 )OLDK= 1.000 -

ENTER YOUR A,B,C,D MATRICES A,B2,C1,D

1 23
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OPEN-LOOP TRANSFER FUNCTION (OLTF)

OLK = GAIN*(OLNK/OLDK) = 4.000

GAIN= 1.000

OLTF (S) NUMERATOR
I OLNPOLY(I) OLZERO(I)
1 ( 1.000 )S** I ( -1.000 ) + J( O.OOOOE+O0)
2 ( 1.000 ) OLNK= 4.000

OLTF(S) DENOMINATOR
I OLDPOLY(I) OLPOLE(I)
1 ( 1.000 )S** 2 ( -2.000 ) + J( 0.OOOOE+00)
2 ( 3.000 )S** 1 ( -1.000 ) + J( O.OOOOE+00)
3 ( 2.000 ) OLDK= 1.000

ENTER YOUR A,B,C,D MATRICES A,B2,C2,D

OPEN-LOOP TRANSFER FUNCTION (OLTF)

OLK = GAIN*(OLNK/OLDK) = 1.000

- GAIN= 1.000

OLTF(S) NUMERATOR
I OLNPOLY(I) OLZERO(I)
1 ( 1.000 )S** 1 ( -1.000 ) + J( 0.OOOOE+00)
2 ( 1.000 ) OLNK= 1.000

OLTF(S) DENOMINATOR
I OLDPOLY(I) OLPOLE(I)
1 1 1.000 )S** 2 ( -2.000 ) + 3 ( .OOOOE+00)
2 3.000 S** 1 -1.000 + 3 O.OOOOE+00)
3 ( 2.000 ) OLDK= 1.000

ENTER YOUR A,B,C,D MATRICES : $

ICECAP> STOP

Example 2. This example illustrates the use of Riccati

solver function to solve optimal control problem using the

assigned problem 15-3 on page 714 [34].

Problem Find the feedback coefficient matrix for the

system and P1 indicated:
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0 1 0O I IA 0 1 ; B 0 ; Y -r-i 2 0 IIX :k:

-6 -11 -6_ 10

o w 2 2 2 2
PI = (X + O.O1X +O.O1X + zU ) dt

1 2 3

(a) z = 1,(b) z - 10,(c) z = 0.1. (d) Compare the time

responses of the system with a step input for each value of z

ICECAP> DEFINE MATRIX

[>: A = <0 1 0;0 0 1;-6 -11 -6>,B=<0 0 10>;B = B',C=<1 2 0>

A =
0. 1. 0.
0. 0. 1.
-6. -11 -6.

0.
0.

10.
C =

1 2 0

1>: Q =(I 0 0;0 0.01 0;0 0 .01>,Zl = 1,Z2 = 10,Z3 = 0.1

Q =

1. 0. 0.
0. 0.01 0.
0. 0. 0.01

Z1 = "'•1.

Z2 =
10.

Z3 -
0.1
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ICECAP> DISPLAY RICCATI

ENTER YOUR A,B,Z,Q MATRICES IN THIS ORDER A,B,Z3,Q

ANS =

-0.8613 0.2398 -0.0382
0.2398 -0.2395 0.0137
-0.0382 0.0137 -0.0146

The solution is not positive definite.

For positive definite solution, type YES for more answer.

SAVE THIS SOLUTION ? N

MORE ANSWERS ? Y

ANS =

-0.8613 0.2398 -0.0382
0.2398 -0.2395 0.0137
-0.0382 0.0137 -0.0146

The solution is not positive definite.

For positive definite solution, type YES for more answer.

SAVE THIS SOLUTION ? N

MORE ANSWERS ? Y

ANS =

0.7293 0.2398 0.0262
0.2398 0.1195 0.0137
0.0262 0.0137 0.0026

The solution is positive definite.

To save, name it P3

Here is your feedback matrix

ANS =

2.6187 1.3710 0.2569

To save, name it K

Here is your closed-loop matrix
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ANS =

0. 1. 0.
0. 0. 1.

-32.187 -24.710 -8.569

To save, name it : ACL

MORE ANSWERS ? N

ENTER YOUR A,BZ,Q MATRICES $

ICECAP> DISPLAY MATRIX

[>: LONG R,K = K'

K =

2.618695387886217
1.371016137664886
0.256856596831102

[>: PRINT('EX2',P3),PRINT('EX2',K),PRINT('EX2',ACL) -

[>: $

ICECAP> DISPLAY TRANSFER/F

ENTER YOUR A,B,C,D MATRICES ACL,B,C,D

OPEN-LOOP TRANSFER FUNCTION (OLTF)

OLK = GAIN*(OLNK/OLDK)= 20.00

GAIN= 1.000

OLTF(S) NUMERATOR
I OLNPOLY(I) OLZERO (I)
1 .( 1.000 )S** 1 ( -0.5000 ) + J( O.OOOOE+O0)
2 ( 0.500 ) OLNK= 20.00

OLTF (S) DENOMINATOR
I OLDPOLY(I) OLPOLE(I)
1 ( 1.000 )S** 3 ( -4.834 ) + J( 0.OOOOE+00)
2 ( 8.569 )S** 2 ( -1.867 ) + J( -1.781 )
3 ( 24.71 )S** 1 ( -1.867 ) + J( 1.781 )
4 ( 32.19 ) OLDK= 1.000
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ENTER YOUR A,BC,D MATRICES : $

ICECAP> COPY OLTF CLTF

ICECAP> DISPLAY SPECS

CONTINUOUS TIME RESPONSE FOR CLTF(S)
WITH STEP INPUT OF STRENGTH = 1.00000

RISE TIME: TR= 0.165856
DUPLICATION TIME: TD= 0.244345
PEAK TIME: TP= 0.759128
SETTLING TIME: TS= 3.24087
PEAK VALUE: MP= 0.766807
FINAL VALUE: FV= 0.310685

ICECAP> DISPLAY EQUATION

CONTINUOUS TIME RESPONSE FOR CLTF(S)
WITH STEP INPUT OF STRENGTH = 1.000000

THE TIME FUNCTION IS
F(T)=

1.4971 EXP(-4.8345 T)
2.8234 EXP(-1.8670 T) SIN( 1.7810 *T+ -39.814)
0.31068 EXP(O.OOOOOE+OOT)

ICECAP> PRINT CLTF

ICECAP> PRINT SPECS

ICECAP> PRINT EQUATION

ICECAP> STOP

Note : To print the data out, try PRINT ANSWER.DAT,EX2.DAT

Example 3. This example illustrates the use of state

variable feedback design function using the assigned problem

12-13 on page 708 [34].

Problem : Design a state-variable feedback system for the

given plant G (S). The desired complex dominant roots are
x

*' to have a f = 0.425. For a unit step function the
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approximate specifications are M = 1.2, t - 0.15 s, and
p p

t = 0.3 s (a) Determine a desirable M(s) that will satisfy
S

these specifications. Use steps 1 to 6 of the design

procedure given in Sec. 12-5 to determine k. Draw the root

locus for G (S)H(S) = -1. From it show the "good"

properties oe state feedback. (b) Obtain y(t) for the final

design. Determine the values of the figures of merit and the

ramp-error coefficient.

10 _i_27 S2 2iooS , 26oo

+0 =0 S50

S+ + + ++ +
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x = x - -5ox + loX
1 2 2 2 3

X = -50X- lOX+X X = -25X+U
3 3 2 4 4 4

0 1 0 0 0

0 -50 10 0 0
xx + U

0 -10 -50 1 0

0 0 0 -25_ 1

Y = 1 0 0 0- X

From desired specs, the model is

Y(S) 7835831

R(S) S + 206.6S + 13767.5S + 389106.2S + 7835831
D

Use ICECAP to solve for k's

ICECAP> DEFINE CLTF POLY

POLYNOMIAL INPUT OF CLTF

ENTER NUM & DENOM DEGREES (OR SOURCE): 0,4
ENTER 1 NUMER COEFF--HI TO LO: 7835831

CLTF NUMERATOR (CLNPOLY) CLTF ZEROS (CLZERO)
( 0.7836E+07) POLYNOMIAL CONSTANT= 0.7836E+07

ENTER 5 DENOM COEFF--HI TO LO: 1,206.6,13767.5,389106.2,7835831
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CLTF DENOMINATOR (CLDPOLY) CLTF POLES (CLPOLE)
1.000 )S** 4 ( -13.30 ) + J( 28.33 )
206.6 )S** 3 ( -13.30 ) + J( -28.33 )

( 0.1377E+05)S** 2 ( -80.00 ) + J( 0.OOOOE+00)
( 0.3891E+06)S** 1 -100.0 ) + J( O.OOOOE+00)
( .7836E+07) POLYNOMIAL CONSTANT= 1.0000

CLK= (CLNK/CLDK)= 7835831.

ICECAP> DEFINE MATRIX

E>: A=(0 1 0 0;0 -50 10 0;0 -10 -50 1;0 0 0 -25>,B=40 0 0 ;B=B'

A =

0. 0. 0.
0. -50. 10. 0.
0. -10. -50. 1.
0. 0. 0. -25.

B =

0.
0.
0.
1.

[>: C= 1 0 0 0

C =

1. 0. 0. 0.

[>: $--

ICECAP> DISPLAY MODERN

ENTER YOUR A,B,C MATRICES A,B,C
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THESE ARE VALID MODELS

-* CLTF - OLTF

GTF -- HTF

- PICK ONE CLTF

KFB =

1.0000 0.0110 0.0006 0.0001

SAVE FEEDBACK MATRIX ? Y

NAME IT K

THESE ARE VALID MODELS

-~ CLTF - OLTF

-~GTF -~HTF

-* PICK ONE : $

ICECAP> DISPLAY SPECS

CONTINUOUS TIME RESPONSE FOR CLTF(S)
WITH STEP INPUT OF STRENGTH = 1.000000

RISE TIME: TR= 0.558339E-01
DUPLICATION TIME: TD= 0.963022E-01
PEAK TIME: TP= 0.136230
SETTLING TIME: TS= 0.290197
PEAK VALUE: MP= 1.19772
FINAL VALUE: FV= 1.00000

ICECAP> DISPLAY EQUATION

CONTINUOUS TIME RESPONSE FOR CLTF(S)
WITH STEP INPUT OF STRENGTH = 1.0000000

THE TIME FUNCTION IS
F(T)=

1.3371 EXP(-13.300 T) SIN( 28.330 *T+ 203.744)
-0.93265 EXP(-80.001 T)
0.47101 EXP(-99.999 T)
1.0000 EXP(O.OOOOOE+OOT)
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ICECAP> DISPLAY MATRIX

[>: DIR

Your current variables are...

K TMAT C B A EPS FLOP EYE
RAND
using 49 out of 10005 elements.

[>: K=K';LONG R,K

K "

1.000000000000000
O .011048120122606
0.000647665052562
0.000104137016359

[>: PRINT('EX3',K)

ICECAP> STOP

Note To print the feedback matrix K, try PRINT EX3.DAT
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